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Abstract
Dental caries is the most prevalent dis-
ease globally, with more than 3.5 billion
people affected. The treatment of den-
tal caries imposes a burden on health
care in every country financially and
timewise. Detection of the disease in its
early stages can mitigate the impact on
the cost of treatment and improve the
patient’s prognosis.

Bitewing X-ray imaging is the second
most used method for dental caries de-
tection after the visual-tactile method.
Aproximal and an-early stage carious
lesion can be easily overlooked by the
visual-tactile exam, making the bitew-
ing X-ray imaging very beneficial for
early detection and a chance for recov-
ery without the need for further dental
treatment.

This Master’s thesis addresses the
problem of dental caries detection from
bitewing images using convolutional
neural networks. First, a dataset of
3889 bitewing images with 7257 anno-
tated dental caries was created for the
purpose of this thesis. We trained mul-
tiple architectures for object detection
and compared their performance using
it. In the end, we used an ensemble of
models to obtain the best-performing
model.

We have created a solution that can
detect dental caries with a precision of
0.751 and a recall of 0.7. Furthermore,
a second model for segmentation of den-
tal restoration was created, achieving
an IOU score of 0.676.

Keywords: dental caries detection,
convolutional neural networks, dental
restorations segmentation, ensemble,
bitewing, X-ray image

Supervisor: prof. Dr. Ing. Jan Kybic
Biomedical imaging algorithms, FEE

Abstrakt
Zubní kaz je jedním z nejrozšířenějších
onemocnění na světě postihující více
než 3.5 miliard lidí. Léčba je náročná
jak finančně, tak časově a zatěžuje zdra-
votnický systém ve všech zemích světa.
Včasná detekce zubního kazu umožňuje
tuto zátěž snížit a zlepšit pacientovu
prognózu.

Po detekci pohledem spojené s pou-
žitím zubařské sondy jsou bitewingové
rentgenové snímky druhou nejvíce vyu-
žívanou metodou pro diagnostiku zub-
ního kazu. Časné a aproximální kari-
ézní léze nejsou prvně zmíněnou me-
todou vždy spolehlivě diagnostikovány,
což dává bitewingovým RTG snímkům
značnou výhodu a šanci pro dřívější di-
agnostiku spojenou s možností zhojení
léze bez nutnosti dalšího lékařského zá-
sahu.

Tato diplomová práce se zabývá pro-
blémem detekce zubního kazu z bitewin-
gových RTG snímků za použití konvoluč-
ních neuronových sítí. Pro účely této
práce byl nejprve vytvořen dataset sklá-
dající se z 3889 bitewingových RTG
snímků se 7257 anotovanými zubními
kazy. Za jeho použití jsme natrénovali
několik architektur pro detekci objektů
a porovnali jejich výsledky. Nakonec
jsme využili spojení modelů pro získání
modelu s nejlepšími výsledky.

Vytvořili jsme řešení, které umožňuje
detekci kazů s přesností 0.751 a citli-
vostí 0.7. Navíc byl vytvořen i druhý
model pro segmentaci zubních výplní,
který dosáhl IOU 0.676.

Klíčová slova: detekce zubních kazů,
konvoluční neuronové sítě, segmentace
zubních výplní, ensemble, bitewing,
rentgenový snímek

Překlad názvu: Detekce zubních
kazů z rentgenových snímků
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Chapter 1

Introduction

As of 2017, dental caries was the most prevalent disease globally[20][21], with
more than 3.5 billion affected people. Despite the advancement of technology in
the medical field, the prevalence has not decreased, hence imposing a burden on
health care in every country. In the US, more than six percent of total health care
expenditures were targeted toward dental care in 2016[22].
Machine learning and especially neural networks have improved remarkably over
the last decade, surpassing human-level performance in the ImageNet classification
task in 2015[23]. Since then, deep learning models’ error rates on the ImageNet
dataset have become four times smaller[24]. This significant improvement in deep
learning led to its wast adoption across many fields, including medical imaging.
Deep-learning models exceeded human-level performance on specific tasks, such
as breast cancer detection[25] or arrhythmia detection[26].
This thesis aims to develop a deep-learning-based model that will be able to
detect dental caries in bitewing X-ray images. The position of every carious lesion
is denoted by a minimal bounding box around the lesion. This model aims to
give dentists an opportunity to cross-check their decision regarding the presence
of carious lesions in the X-ray image. Furthermore, detecting caries’ position
directly from the image benefits dentists from saving information about dental
caries in a digital form without their intervention. Having the data in a digital
format could help dentists communicate the problem to a patient by overlaying
the position of dental caries over an X-ray image or provide them an option to save
that information for monitoring lesion progression over time. Last but not least,
software like this would be helpful in education, where dentistry students would
be able to train their ability to recognize dental caries without the need for a tutor.

The structure of this thesis is as follows: In Chapter 2, the medical background
is introduced, describing human dentition and dental caries. Chapter 3 presents
the fundamentals of the techniques used in this work. In Chapter 4, related work in
automatic caries detection is discussed. Chapter 5 describes the dataset that was
created for this thesis. In Chapter 6, we introduce the reader and the structure
of the object detection framework that we created and used for caries detection.
In Chapter 7, we propose a solution to the detection of dental caries. The results
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1. Introduction........................................
achieved by the proposed methods are presented in Chapter 8. Chapter 9 discusses
the results and methods that we used to obtain them. In Chapter 10, we summarise
the work and suggest future improvements.

2



Chapter 2

Medical background

2.1 Human teeth

Human dentition is composed of two sets of teeth - primary and permanent. The
primary, also called deciduous, consists of 20 teeth and begins to erupt at six
months of age. This dentition is completely replaced at the approximate age of 13
years by a permanent set of teeth, including 32 teeth. These can be divided into
four classes based on function and form. Namely, those classes are:

Incisors

A total of 8 incisors teeth are found in primary and permanent dentition. They are
located at the oral cavity entrance, and their primary purpose is to cut and shear
food. They are essential for a smile’s esthetics and play a vital role in phonetics.

Canines

A total number of four canines are located at the corners of dental arches, dividing
them into a frontal and a lateral part. They have a triangular shape with a single
cusp tip on the incisal edge. The structure is associated with their ability to seize,
pierce, tear and cut food. Along with the incisors, they are essential for esthetics.

Premolars

Premolars are teeth found only in permanent dentition, being the successional
teeth of all primary eight molars. Premolars share functional characteristics of
canines and molars - they both seize and grind food thanks to their anatomy.

Molars

Human dentition contains 12 permanent molars with no deciduous predecessors.
Their leading role is crushing and grinding food to dimensions appropriate for
swallowing. Broad occlusal surfaces make them capable of this task. Molars are
prone to dental caries due to deep grooves that run across the occlusal surface of
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2. Medical background ....................................

Figure 2.1: Structure of teeth

the teeth and a vast area of contact between adjacent molars. These places are
difficult to clean, resulting in a space where bacterias tend to accumulate.

2.1.1 Structure of teeth

Teeth are composed of three structures: Enamel, pulp-dentin complex, and ce-
mentum. A picture of teeth structure is depicted in Figure 2.1. The superficial
layer covering the anatomic crown of a tooth consists of a highly mineralized
crystalline structure called the enamel. More than 90% of the volume is taken
up by minerals (hydroxyapatite), making enamel the hardest substance of teeth
and even the human body. Its thickness varies from one class of tooth to another,
but it ranges from 2 to 3mm on average. Enamel is produced in the process of
amelogenesis by cells occurring only in the development stage, meaning that it
cannot regenerate. The biggest threat to enamel are acidic conditions, which can
cause its demineralization. Enamel has the ability to remineralize, but if the cause
is not removed, the enamel is irreversibly damaged, and a cavity is formed.
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...................................... 2.2. Dental caries

Pulp-Dentin complex

Pulp and dentin are two specialized connective tissues. However, some sources
consider them a single tissue forming a complex [27]. The dental pulp is located in
the pulp chamber of the tooth, and it serves four functions: formative, nutritive,
sensory, and reparative. The pulp is circumscribed by dentin formed by specific
cells in the process of dentinogenesis. Their cell bodies are found in the pulp
chamber, but their cytoplasmic cell processes, located in dentinal tubules, extend
into the mineralized dentin. Thanks to those processes, dentin is considered to
be a living tissue. Its function is to provide the ability to regenerate and react
to pathological stimuli, such as blocking the advancement of carious lesions by
precipitating minerals in the affected area. Dentin forms the most significant
portion of the tooth. In the coronal part, it is covered by the enamel, and on the
root of the tooth overlayed by cementum. There are different types of dentin.. Primary dentin forms the outer and most prominent layer of dentin closest

to the enamel. It is produced in the development stage of the tooth.. Secondary dentin is formed after the root development is completed.. Tertiary (reactive) dentin production is encouraged as a response to patho-
logical stimuli, such as injury or caries. It is produced at the pulp-dentin
interface in order to protect the pulp.. Transparent dentin is characterized by the presence of mineral precipitates
in dentinal tubules as a result of injury or aging.

Cementum

Cementum covers the roots of teeth. Its structure consists of approximately 50 %
of anorganic material, 50 % of organic matter, and water, making it slightly softer
than dentin and far more delicate than enamel. Together with gingiva, periodontal
ligaments, and the alveolar bone, cementum forms periodontium, ensuring that
the tooth is attached to the bone. Cementum possesses the ability to repair itself
to a limited degree.

2.2 Dental caries

2.2.1 Cause

Dental caries is an infectious disease characterized by the demineralization of hard
dental tissues. The leading cause is dental plaque (also called a biofilm). Plaque
is composed of bacteria, their by-products, and saliva, and it has the ability to
adhere to the tooth structure. Some bacteria in the plaque metabolize refined
dietary carbohydrates and produce organic acid by-products. If present in the
biofilm for an extended period of time, those acids can lower the pH in the biofilm
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2. Medical background ....................................
to below a critical threshold (5.5 for enamel, 6.2 for dentin)[27]. Low pH drives
phosphate and calcium from the tooth into the biofilm in an attempt to reach an
equilibrium. This loss of minerals in a tooth is called demineralization and, if not
stopped, can lead to a caries lesion. However, this process can be controlled and
eventually reverted if the pH returns to neutral and the relative concentration
of soluble calcium and phosphate in the biofilm is higher than in the tooth. The
cycle of demineralization and remineralization occurs multiple times a day and is
modulated by many highly individual and tooth-specific factors.

2.2.2 Epidemiology

Untreated dental caries in permanent teeth is the most prevalent medical condition
[20]. In 2010, around 35% of the global population was affected. The most
considerable prevalence was observed around the age of 25. The sex of a person
was not a significant factor in the statistics. No noticeable change in prevalence
occurred between 1990 and 2010 [20] [28], which means that the technological
improvement in dentistry did not affect the prevalence. Kassebaum et al. suggest
that 42 new cases of tooth decay in primary and permanent teeth will develop
annually from observing 100 people. This imposes a burden on health care systems.
According to Huang et al., [22] in the United States alone, the cost of dental care
in 2016 was 0.1 trillion $ out of total health care expenditure of 1.62 trillion $.

2.2.3 Diagnosis

Visual-tactile diagnosis is the primary way to inspect teeth and detect caries.
Dentists use a mouth mirror and sharp probe to perform the examination. It is
indispensable to dry teeth since the difference in the refractive index between
sound and carious enamel is higher when water is removed from the tissue. This
increases the chance of spotting a carious lesion before it has an opportunity to
progress and cavitate the tooth. The second most used method clinicians use to
complement the visual examination is a dental X-ray. In dentistry, two main types of
X-ray imaging are taken during the examination: intraoral (the X-ray film is located
inside the mouth) and extraoral (the X-ray film is outside the mouth). The intraoral
images are the most commonly taken ones. This category includes bitewing and
periapical X-rays, each featuring different aspects of the teeth. Extraoral imaging
is mainly used to detect dental problems in the jaw and skull area. The most
common one to be used is a panoramic radiograph [29].
Less common diagnostic measures are:

. Laser light-induced fluorescence. Digital imaging fiber-optic transillumination. Electrical conductance and impedance measurement
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Figure 2.2: Bitewing X-ray image Figure 2.3: Periapical X-ray image,
source [1]

Bitewing X-ray

The bitewing radiograph is an image that depicts the crowns of upper and lower
teeth on the left or right side, as seen in Figure 2.2. It gives a clear sight of the
interproximal surfaces allowing good caries detection in this area. Interproximal
caries are challenging to diagnose by the visual-tactile method; thus, using the
bitewing X-ray can lead to an early diagnosis and a chance for the enamel to
remineralize. Also, bitewing X-rays portray the alveolar crest, where the dentist
may notice any bone thickness changes due to periodontal disease. Unlike the
other intraoral method, it does not show the entire length of the teeth. This type
of dental X-ray is the most commonly taken for preventive purposes [29].

Classification of dental caries from bitewing X-ray

Dental caries are classified on multiple bases. The common ones are the depth of
the lesion or lesion activity.
A frequently used classification scheme was proposed by Pitts & Fyffe in 1988
[27], including a total of 4 categories, three for cavitated lesions and one for
non-cavitated lesions. They described this classification for oclusal surfaces. For
bitewing X-ray images, the same classes are distinguished, only applied for the
approximal surfaces of teeth..D0 Surface sound. A healthy tooth with no evidence of either treated or

untreated caries..D1 Initial Caries. No detectable loss of tooth substance. Radiolucency is
present in the outer half of the enamel..D2 Enamel caries. Demonstrable loss of tooth substance. Radiolucency is
visible in the inner half of the enamel and goes up to the enamel-dentin border.
No evidence that cavitation has penetrated through the enamel layer into the
dentin.
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Figure 2.4: Panoramic X-ray image, source [2]

. D3 Caries of dentin. Radiolucency reaches the dentine, breaking the enamel-
dentine border. However, there is not a significant spread in the dentin..D4 Pulpal involvement.Deep cavity forms with probable involvement of the
pulp.

Periapical X-ray

Periapical X-ray portrays the tooth from the crown to where the root attaches to
the jaw; hence, the whole tooth length is visible. As illustrated in Figure 2.3, it
only shows the upper or lower teeth in one part of the jaw. Periapical X-ray detects
any abnormalities in the root and any periapical lesions.

Panoramic X-ray

This extraoral dental image shows the entire mouth area, including the upper and
lower jaw and adjacent structures. It depicts the full dentition, including teeth that
have not erupted yet. Impacted teeth, i.e. wisdom teeth as seen in Figure 2.4, can
be identified as well. Panoramic X-ray is often used before major procedures or to
diagnose jaw tumors, cysts, fractures, or sinusitis. Nevertheless, it is not usually
taken to diagnose dental caries [30].

Digital imaging fiber-optic transillumination (DIFOTI)

DIFOTI is different from the previously mentioned types of dental imaging. It
works with infrared fiber-optic light and not an X-ray, unlike the others. A lesion’s
optical properties differ from those in healthy dental tissue, making it appear
darker. DIFOTI enables the detection of fissure/occlusal caries, interproximal
caries, and fractures and cracks in the tooth. It is a noninvasive method since it
does not expose the patient to ionizing radiation [31].
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2.2.4 Treatment

Treatment is suggested based on the progression of the lesion and the patient’s
risk profile. In some cases, only instructions to increase oral hygiene together with
fluoride toothpaste are enough to stop the progression and lead to remineralization
of the enamel. The dentist can suggest an application of a sealant to prevent further
progression of the lesion. If this treatment is perceived as insufficient or if the
carious lesion is already cavitated, restoring the tooth is required. This consists of
removing all dental decay and filling the cavity with restorative material such as
dental composite or amalgam [27][29].
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Chapter 3

Theoretical background

3.1 Computer vision tasks

This section provides a brief overview of standard computer vision tasks.

3.1.1 Classification

Let’s say we have an image x. In a classification task, our goal is to assign one of
n possible classes to the image:

ŷ = fθ (x) , (3.1)

where f is a mapping, sometimes called a model, and θ represents model parame-
ters if it holds that ŷ = y, where y is a true class of the image x, the classification
is considered to be correct. It is possible to output p ∈ Rn instead of ŷ, where
pi ∈ p is probability of i = y, modeled by fθ.

3.1.2 Semantic segmentation

For an input image x ∈ Rn×m, the goal is to output Ŷ ∈ Rn×m, where ˆyi,j is the
predicted class of pixel i, j in image x. Similarly to the classification problem, we
can output matrix P ∈ Rn×m×c, where pi,j,c is the probability of pixeli,j belonging
to class c. A sample of semantic segmentation output can be seen in Figure 3.1.

3.1.3 Object detection

In object detection, the goal is to locate and recognize objects of interest in image
x. A rectangle and a category represent a ground truth object. Model predicts
Y ∈ Rn×6 values for each image. Each row of Y consists of four numbers, which
describe a rectangle, the category of the object inside the rectangle, and a number
in the range from 0 to 1 called the confidence. In literature, we can see the
term score instead of confidence. Nevertheless, the meaning remains the same:
Certainty of the network regarding the particular prediction described by the
bounding box and category. Please note that the confidence of predictions does not
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.

Figure 3.1: From the left: semantic segmentation, object localization, object detection,
instance segmentation

sum to one. In other words, we are not talking about probabilities since multiple
detections per image can correspond to the ground truth.

3.1.4 Instance segmentation

Instance segmentation is similar to semantic segmentation, with the alteration
saying that two objects of the same category would have different ground truth
values. If we have O1,O2, where Oi ⊂ x are pixels of object i in image x. Then

o1i ̸= o2i for o1i ∈ O1, o2i ∈ O2;∀i. (3.2)

3.2 Data format in object detection

As described in Section 3.1.3, the position of an object is denoted by a bounding
box. The four parameters used to describe a bounding box can be selected in
multiple ways. This ambiguity led to a disjoint notation. The most widespread are
as follows.

3.2.1 PASCAL VOC

The format was introduced together with the PASCAL VOC dataset, the most popu-
lar dataset for object detection algorithm benchmarking in 2010. The bounding
box is described by points p1(x, y), p2(x, y) located in the top-left and bottom right
corner. The coordinates range from 0 to image width/height in pixels. All the
annotations are stored in a single XML file [32, 33].

3.2.2 COCO

COCO data format is represented by a single JSON file containing all bounding
boxes of the dataset. The boxes are described by the top-left corner point p(x, y)
and the width and height of the box. The coordinates and box dimensions are
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again in the range 0 to image dimensions. In MS COCO, the annotation can be
accompanied by a piece of additional information to solve the task as an instance
segmentation problem.

3.2.3 YOLO

This format was introduced together with the first YOLO architecture [34], and
this annotation style is still persistent whenever working with the YOLO-family
neural networks. In this format, the annotations are divided into multiple TXT files
and each of them contains annotations for a single image. The bounding box is
described similarly as in the COCO dataset, but the coordinates are normalized to
be in the 0 to 1 range. The advantage of this approach is that the annotations do
not have to be modified when image dimensions are scaled [34, 33].

3.3 Metrics

3.3.1 Intersection over union (IOU)

Intersection over union, also known as the Jaccard index, is defined as demon-
strated: Let Bgt and Bp be a ground truth and a predicted bounding box. The
Jaccard index J is calculated as

IOU = J(Bp, Bgt) = area(Bp
⋂

Bgt)
area(Bp

⋃
Bgt)

. (3.3)

From the Equation 3.3, we can observe that the lowest value of IOU is 0. This
means there is no overlap and the maximal value is 1, indicating a perfect match.
We use a predefined threshold value of IOU to decide if the predicted bounding box
matches the ground truth. Usually, we choose this threshold to be 0.5 or above.

IOU can be defined for the semantic segmentation task with two classes (e.g.
background and target class). Let Ŷ ∈ Rm×n be the mask of the predicted values,
where ŷi,j = 1 if the model predicts, that pixel i, j belongs to target class. The IOU
is defined as:

IOU =
∑m

i=1
∑n

j=1 ŷi,j ∧ yi,j∑m
i=1

∑n
j=1 ŷi,j ∨ yi,j

, (3.4)

where yi,j ∈ Y ∈ Rm timesn is the ground truth value for pixel i, j.

3.3.2 Precision and recall

Precision

When speaking about object detection, we say that a prediction is a true positive
(TP) if the IOU value is greater than the predefined threshold τ . If otherwise, the
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Figure 3.2: Examples of IOUs for different overlaps between GT and predicted box,
source. [3]

prediction is treated as a false positive (FP). Let’s assume there are N predictions
of our model, from which S are correct. Precision is defined as

Precision(τ, γ) = TP (τ, γ)
TP (τ, γ) + FP (τ, γ) , (3.5)

where γ is the confidence threshold, meaning we discard all predictions with
confidence smaller than γ. Note that for fixed value of τ are FP (γ) and TP (γ)
decreasing functions of γ [33].

Recall

If there is a ground truth bounding box for which there are no given detection
values of γ and τ , we say it is a false negative (FN). If we consider a dataset with
G ground-truths and N predictions of which S is correct, where (S ≤ G), the recall
is expressed as:

Recall(τ, γ) = TP (τ, γ)
TP (τ, γ) + FN(τ, γ) . (3.6)

Since the value of FN(γ) increases with the growing value of γ, we see that recall
is the decreasing function of γ.

F1 score

The value of the F1 score is computed as the harmonic mean of precision and
recall.

F1(τ, γ) = 2 ·Recall(τ, γ) · Precision(τ, γ)
Recall(τ, γ) + Precision(τ, γ) . (3.7)
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Precision-recall curve (PR curve)

From Subsections 3.3.2 and 3.3.2, we were able to observe that precision mainly
grows as we increase the confidence threshold γ, while at the same time recall
decreases. The precision-recall curve captures the relation between precision and
recall. An example of the curve is illustrated as the blue line in Figure 3.3. In other
words, we can say that the precision-recall curve is a mapping

γ → Precision(γ)×Recall(γ), (3.8)

where γ ranges from 1 to 0.

Mean average precision (mAP)

To calculate mAP we first need to get the PR-curve and then interpolate the
precision values. Suppose that we have K different confidence values γ among
model predictions, which are ordered as

γ(k), k = 1, 2, ..., K, such that γ(i) > γ(j) for i > j. (3.9)

The interpolated precision-recall curve is then defined as

Precisioninterp(R) = max
k|Recall(γ(k))≥R

{Precision(γ(k))}, (3.10)

where R is a real value contained in interval [0,1] [33]. The interpolated precision-
recall curve is pictured in Figure 3.3 in red color. Now, we can compute the
average precision (AP) as the area under the interpolated PR curve. In practice,
there are two different ways to approach the Reimann integral. They differ in
the number of samples used to compute the integral and are called N-point and
all-point interpolation. The N-point, specifically 101 point interpolation, is used
in the MS COCO competition. On the other hand, the all-point interpolation is
nowadays used in PASCAL VOC challenges [4, 4].

Since the AP is calculated per class, the mean average precision is defined as
the average in all categories.

In Subsections 3.3.2 and 3.3.2, we stated that precision and recall depend
on a predefined IOU threshold τ to consider prediction as true positive. This
dependency makes the value of MAP vary over different values of τ . The threshold
value used for computation of the mAP is usually denoted in the metrics name, such
as AP@.5 in the case of MS COCO. 1 The standalone AP without any numerical
values attached to it usually refers to the official COCO metric. The official COCO
metric is in its explicit form written as AP@[.5 : 0.05 : 0.95] and is computed as the
average of MAP values for ten different τ values, ranging from 0.5 to 0.95.

The letters S, M, and L in the subscript, such as APS denote that the metrics
are calculated for a subset of ground truth predictions only. Taking into the
consideration only bounding boxes with area ≤ 322 pixels, 322 ≤ area ≤ 962 pixels
and area > 962 pixels

1Note that even though the mean average precision is computed, the AP shortcut, which stands
for average precision, is used.
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3. Theoretical background ..................................

Figure 3.3: Standard and interpolated precision-recall curve, source [4]

3.3.3 Mean average recall in MS-COCO (mAR)

PyCOCOtools, the official metrics for MS-COCO benchmark [35], compute the
average recall (AR) by the following approach: Predictions are sorted according to
their confidence in a decreasing order. We take n boxes with the highest confidence
values and evaluate their recall by Equation 3.6 for a predefined IOU threshold
θ. We use a similar notation as in the case of AP, where AR@.Xna denotes the
average recall computed for IOU threhsold X, where we consider n most confident
predictions. By a ∈ {S, M, L, all} we denote size of the rectangles, for which AR
is computed. If we omit some of those, the following default values are used
a = all, n = 100, X = [.5 : 0.05 : 0.95].

Cross-Entropy loss

Let y ∈ Rn, yi ∈ {0, 1} be a vector of ground truth classes and ŷ ∈ Rn be a vector
of model preditions, where ŷi ∈ [0, 1] is the predicted probability, that ith element
belongs to class 1. The cross-entropy loss is computed as follows [36]:

LCE(y, ŷ) = − 1
N

N∑
i=1

yi log(p(ŷi)) + (1− yi) log(1− ŷi) (3.11)
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Soft Dice Loss

Let’s consider y and ŷ as in section 3.3.3, Soft Dice Loss is then computed as:

SDL(y, ŷ) = 1−
∑N

i=1 2yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

(3.12)

Dice Loss is computed in the same way, we only threshold values of ŷ prior to
computation of the loss [37, 36].

3.4 Optimization

In deep learning, a defined loss function that should be minimized usually does not
have an analytical solution, or the solution cannot be evaluated for computational
reasons. Therefore, the iterative numerical optimization approach is used, where
we compute the gradient of the loss function with respect to the parameters of
the optimized model. Those are updated by changing their values in the negative
direction of the computed gradient.

3.4.1 Optimizers

The most simple optimizer is Stochastic Gradient Descent (SGD), which in each
step updates the weights by stepping in the opposite direction of the gradient The
learning rate affects the length of the step.

Many advanced optimizers that increase the speed of convergence are available.
Commonly used are SGD with moentum, Adam and AdamW.

3.4.2 Weight decay

We can add the L2 of the model weights to the loss function. This term is called
weight decay and should decrease the discrepancy between performance on train-
ing and testing part of the dataset.

3.4.3 Learning rate schedulers

Learning rate is considered to be one of the most, if not the most important param-
eter, in deep learning. It is usually beneficial to change the learning rate during
the course of training. This can be done manually or automated by an algorithm
that increases or decreases the learning rate based on the set of predefined rules.
This algorithm is called the learning rate scheduler.

ReduceLROnPlateau

We couple the scheduler with a model metric, and when the improvement of the
metric stalls for a predefined period, the learning rate decreases. The scheduler is
not heavily reliant on the setting of its hyperparameters, making it a go-to starting
choice for most developers.
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Figure 3.4: Learning rate schedulers: Cosine annealing is red, Reduce learning rate
on plateau has purple color

Cosine annealing

Cosine annealing changes the value of learning rate according to the equation
3.13, where T is half-period of the cosine.

lr(t) = lrmin + 1
2 (lrmax − lrmin)

(
1 + cos

(
t

T
π

))
(3.13)

It is commonly used with two different settings. Either we set T to estimated
length of the training. The learning rate than decreases throghout the training,
as can be seen in Figure 3.4, or we select small value of T and the learning rate
oscilates in predefined boundaries multiple times throughout the training. This
should help the optimizer to overcome saddle points.

3.5 Artificial neural network (ANN)

The mechanisms of the human brain inspire artificial neural networks. Human
neuron cells are in ANN replaced by artificial neurons, which are defined as:

y = f
(
wT x + b

)
. (3.14)

Where x is a vector of inputs, w stands for weights and b is bias. Symbol f

denotes an activation function f : R→ R. The artificial neuron proposed by Frank
Rosenblatt in the perceptron algorithm worked with a step function [38], but
nowadays, different functions such as ReLu, sigmoid or tanh are used. The output
of the neuron y is called activation of the neuron.

Neurons are usually structured into layers. The connection between layers
depends upon the architectural choice. First ANNs used fully connected layers,
meaning that the input into a neuron in layer n was composed of all activations
from layer n− 1. Fully connected neural networks are nowadays sparsely used in
computer vision. Convolutional neural networks (CNNs) or vision transformers
are used instead. In the case of CNNs we limit neurons’ receptive field to the
local neighborhood only; this decreases the computation complexity and includes
our prior knowledge of pixel neighborhood in the input image. Having the same
weights for the whole input makes the network invariant to shifts in the input.
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3.5.1 Convolutional layer

A convolutional layer consists of Cout neurons, each having Cin, H, W receptive
field. Those neurons are called kernels with width W height H and several input
channels Cin. In each layer, we convolve2 the input X with the kernel W , the
output Y is defined by:

yo,i,j =
∑
cin

∑
∆i

∑
∆j

xc,i+∆i,j+∆jwo,c,∆i,∆j (3.15)

Nowadays, modifications of convolutional layers are proposed, such as dilated
convolution, grouped convolution, or depth-wise separable convolutions are used.
However, the fundamentals remain the same: Filter sliding over the input produces
an output.

3.5.2 Activation functions

A non-linear activation function usually follows the output of the convolutional
layer. Many activation functions are at our disposal, but the most commonly used
is ReLU and its derivatives, such as SERLU, SELU, ELU, Swish, and Leaky ReLU.
Values of those functions are depicted in Figure 3.5.

3.5.3 Normalization layers

Normalization layers make the training of ANNs faster and more stable. It has been
shown, that normalization-layers decrease the generalization gap ,while increasing

2Even though we usually refer to convolution, in practice, cross-correlation is used instead. Terms
cross-correlation and convolution are used interchangeably.
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Figure 3.5: Graphs of ReLU based
activation functions, source [5]

Figure 3.6: Batch and group normalization
layers with denoted axes, across, which the
normalization statistics is computed

the convergence speed [39, 40]. The normalization layers differ in spatial axis,
across which, the normalization statistics is computed, this is illustrated in Figure

Batch-normalization

The most normalization layer is batch normalization, which computes the output
of the layer yi as:

x̂i ←
xi − µB√
σB2 + ϵ

; yi ← γx̂i + β (3.16)

where γ and β are learnable parameters, B denotes, that this value is computed
over a mini-batch.

Group-normalization

Wu et al. [40] proposed a normalization method, where the statistics are computed
over groups of channels. We et al. showed that group normalization outperforms
batch normalization when both layers are used with batch sizes smaller than eight.

The disadvantage of group normalization is the introduction of a new group size
G hyper-parameter, which needs to be tuned to obtain the results claimed by the
authors [40].

3.6 Transformer architecture

Transformer architecture debuted in computer vision in 2021 and has achieved
outstanding results, beating state-of-the-art models in multiple benchmarks across
all computer vision tasks. As of May 2022, the best-performing models in the main
computer vision benchmarks are based on transformer architecture. We think of
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the following benchmarks to be the main ones in computer vision: ImageNet
benchmark (classification task), COCO (object detection), ADE20K (semantic
segmentation).

The transformer architecture was proposed already in 2017 for the task of natu-
ral language processing (NLP). We will briefly introduce transformer architecture
for the NLP task since it is crucial for understanding transformers for computer
vision.

Transformers in NLP

Transformer architecture was introduced in the paper Attention is all you need [41]
for NLP. NLP is a task where input is a sequence of words of length n and output
is a sequence of m words, where n and m usually differ. The sequence of words is
converted into a sequence of vectors. There are multiple options for how to embed
words into the vector. Commonly used is TD-IDF or Word2Vec[42]. Positional
encoding is added to those vectors are then the encoder block processes it. The
novel key component is the self-attention module, where for the input sequence of
vector values V , keys K and queries Q are computed. We output values and keys
from the encoder, and from the decoder’s self-attention module, we output queries.
We then take keys and values from the encoder and queries from the decoder and
input them into another attention block:

Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V, (3.17)

where dk is dimension of keys. More details can be seen in Figure 3.7 or in [41].

3.6.1 Transformers in computer vision

The first transformer-based model was the Vision Transformer (ViT) which is
capable of image classification only. It is composed of multiple encoder blocks
stacked on top of each other; those blocks are the same as those used by the
transformer for the NLP task. On the top encoder block is attached a multi-
layer perceptron (MLP) head, which outputs values for each class. Those can be
converted into corresponding probabilities by a softmax layer. The input into ViT
are 16× 16 image patches linearly projected into vectors; the whole architecture is
shown in Figure

3.7 General architecture for object detection

Even though there is a wide variety of architectures for object detection, the core
principles remain the same. The model is composed of three main parts: backbone,
neck, and head, as depicted in Figure 3.11. Each of those blocks can usually
be swapped for a different one, fulfilling the same purpose. This gives us great
flexibility and allows us to try different combinations of those blocks.
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Figure 3.7: Architecture of transformer with two encoders and two decoders, source
[6]

Backbone

The purpose of backbones is to transform the input image into feature maps. For
this purpose, we use classification models with the classification head removed.
Most parameters of object detection models are usually part of the backbone. The
extraction of useful feature maps is vital for other blocks to perform well. The
most common backbones are models from the ResNet family.

Neck

The neck is responsible for the merging of features from the backbone. This is
not a straightforward task since we usually use features from different backbone
layers. This allows us to get semantically strong features from deeper layers and
more detailed information from earlier ones. Common neck architectures are
feature pyramid network or PANet [43].

Head

The head is responsible for predicting the position of boxes and their classification.
It uses the features extracted by the backbone and merged by the neck. Based on
the approach to box prediction, we differ them into Dense prediction heads (YOLO,
RetinaNet) or Sparse prediction heads(Faster R-CNN) [44].
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Figure 3.8: Architecture of ViT, source [7]

Figure 3.9: Architecture of different necks for feature fusion, source [8]

3.8 Backbone models

This section will introduce multiple architectures of neural networks, which were
used as a backbone throughout our work.

3.8.1 ResNet

ResNet architecture was introduced by He et al. [45] and proposed a novel element
of deep-learning architectures - an identity shortcut connection sometimes called a
skip-connection. Let x be the input into a block composed of multiple convolutional
layers with activation functions in between3; we will call this block a mapping F .

3Addition of batch-normalization, or other layers is possible
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Figure 3.10: The schema of two-stage
detection process of Faster R-CNN

Figure 3.11: General architecture for
object detection, source [9]

The output of the residual block H, derived from F is defined as:

H (x) = F (x) + x. (3.18)

The reasoning behind the residual block is to make it easier to learn the identity
mapping if desired. This has other benefits, especially the improvement of the
gradient flow during back-propagation, making it easier to optimize such blocks.
This ease of optimization can be seen by inspecting the loss function landscape of a
model with and without skip-connections in Figure 3.12. Final ResNet architecture
is composed of multiple residual blocks stacked one after another; the models vary
in the number of layers used; this is denoted in the name with a number such as
ResNet50 or ResNet101.

3.8.2 EfficientNet

When scaling the model’s size, we can increase: Number of layers (depth), the
number of filters in each layer (width), or the width and height of feature maps
(resolution). It has been a common practice to change only one of them. Tan and
Le [46] did a multi-objective neural network search, where they tried to maximize
objective function O defined as:

O = ACC (m)× [FLOPS (m) /T ]w , (3.19)

where ACC(m) and FLOPS(m) are accuracy and floating-point operations (FLOPS)
of model m, T is the target number of FLOPS, and w is a hyper-parameter con-
trolling the trade-off between accuracy and number of FLOPS of the final model.
This search resulted in the EfficientNet-B0 baseline model, which can be scaled to
obtain a more extensive network called B1-B7.
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Figure 3.12: Comparison of loss landscapes, source [10]

3.8.3 Swin transformer

Swin transformer architecture overcomes the limitations of ViT, which is working
with 16× 16 image patches only. This is insufficient for segmentation and object
detection tasks, where dense predictions are needed. Swin transformers are in the
first layer working with 4× 4 patches. Since the computation complexity of the self-
attention layer grows quadratically with the number of input tokens, the authors
overcome this by using neighbor patches only. Attention is thus computed with
respect to tokens in the non-overlapping local window. As depicted in Figure3.14,
this local window for computing self-attention is shifted after every encoder layer.
This shift introduces cross-window connections, which increase the modeling
capacity of the model. After a particular number of encoder layers, neighbor
patches are merged, which reduces the number of patches while increasing their
size by a predefined factor. This mimics the behavior of CNNs, where we start
with big, semantically weak feature maps and gradually decrease their dimensions
while increasing their number. Having this kind of feature map allows using swin
transformer as a general backbone for any task. [11]

3.9 Detection models

3.9.1 Faster R-CNN

Faster RCNN (Region-Based Neural Network) architecture is a two-stage detector.
In the first stage, Region Proposal Network (RPN) finds regions of interest (ROI)and
proposes bounding boxes corresponding to those regions. This is done by sliding
a small neural network over the output of the backbone. In the second stage,
features corresponding to positions of ROIs are extracted from the backbone and
processed by a classification network, which decides if the region corresponds to a
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Figure 3.13: Hierachical structure of
Swin Transformer compared with ViT,
source [11]

Figure 3.14: Shift of local window
for computation of self-attention, source
[11]

Figure 3.15: Focal Loss, source [12]

background or is one of the target classes. The schema of the architecture is in
Figure 3.10

3.9.2 RetinaNet

The biggest contribution of RetinaNet is the introduction of focal loss [12], see
Figure 3.15. It helps to mitigate to the problem if class imbalance by changing the
formula Cross-Entropy loss. The penalization of well-classified samples decreases,
increasing the importance of correct classification of hard-to-classify examples.

3.9.3 EfficientDet

EfficientDet tries to achieve a similar goal as EfficientNet: Propose a computa-
tionally effective architecture for object detection that would be scalable. Since
an efficient backbone architecture was already proposed [46], they focus mainly
on feature fusion from multiple layers. Based on the study of FPN, PANet, and
NAS-FPN, a Bidirectional feature pyramid network (BiFPN) was proposed as the
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Figure 3.16: Architecture of U-Net model, source [13]

most computationally effective neck architecture [8]; it consists of multiple BiFPN
blocks stacked on top of each other, see 3.9. The count of those blocks is dependent
on the size of the used backbone.

3.9.4 Models for image segmentation

U-Net

U-Net is an architecture for semantic segmentation, with an encoder-decoder
structure as shown in Figure 3.16. The decoder extracts feature maps from the
input image with an increasing semantical strength throughout the layers. In the
middle of the network is a so-called bottle-neck layer with the strongest semantical
information about the image but lacks information about high-resolution details of
the input image. Hence when the decoder decodes the information from the bottle
neck, it is combined with information from the shallower layer, which contains
information about image details required to obtain a precise dense prediction.
The decoder proposed by Rennenberger et al. [13] can be replaced by a general-
purpose backbone, as demonstrated by Baheti et al. [47], who used EfficientNet
as the backbone.
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Figure 3.17: Pseud code of NMS and soft-NMS, source [14]

3.10 Model ensembling in object detection

Let say we have M different models, each of them predicting Bi = {b1, ..., bN}
bounding boxes and Si = {s1, ..., sN} confidence values for a given image corre-
sponding to a single class. We merge predictions of all models together. It is
possible to use weights W = {w1, ..., wM} to express our prior belief in the given
model. Set of all boxes B and confidence scores S is thus obtained by:

B =
M⋃

i=1
Bi ,S =

M⋃
i=1

Siwi

F
, (3.20)

where F is an optional normalization constant. It’s only purpose is to ensure that
confidence score will be less than 1 after the ensembling. Commonly used value
for F is 1

M

∑M
i=1 wi. After obtaining sets B and S we post-process them by one of

the following algorithms: Non-maximal suppression, soft non-maximal suppression,
non-maximum weighted suppression or weighted boxes fusion.

Non-maximal supression (NMS)

In non-maximal suppression, we first sort all boxes B by their confidence S in
descending order. We go thru the sorted set B and check if any other box b in B
has an overlap greater than the predefined threshold Nt. In that case, we remove
box b from B. More details regarding the NMS algorithm are in the pseudocode,
which is in Figure 3.17.
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Soft non-maximal suppression S-NMS

Soft non-maximal supression extends the NMS algorithm by a possibility to keep
overlapping the predictions if their confidences are high. Instead of removing
boxes with an overlap, we decrease their confidence value by the follwing Gaussian
penalty function:

si = sie
− iou(M,bi)2

σ ,∀bi /∈ D (3.21)

where M is the currently processed bounding box, and D is the set of already
processed boxes. After processing all boxes, those with si < T are removed, where
T stands for a confidence cut-off threshold [14].

Non-maximum weighted suppression (NMW)

Non-maximum weighted suppression does not remove boxes in case of an overlap,
but merges them togehter by following formula:

M =
∑n

i=1 ωi × bi∑n
i=1 ωi

(3.22)

ωi = si × iou (bi, bargmaxisi) (3.23)

whereM is the merged bounding box, for which no confidence value is computed
[48, 49].

Weighted boxes fusion (WBF)

Weighted boxes fusion combines boxes similarly to NMW. The main difference is
the iterative approach to the fusion, outputting confidence for the merged box,
and awareness of several models, which contributed to the prediction. The steps
of WBF are as follows [49]:..1. Sort B by S as in NMS...2. Declare empty lists L and F that would be used to store boxes clusters and

merged boxes, respectively..3. Iterate through B. If there is a box in F for which IOU > Threshold, add the
box from B to list L on the position corresponding to position of the matched
box in F. If there is no match found, add it to the end of L...4. Recalculate the box coordinates M and confidence c in the list F on the
position where we added the box to L by formulas3.24...5. After processing all boxes from B adjust confidence scores by a formula3.25,
where T is the number of contributing boxes and M is the number of models
used for ensembling.
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M =

∑n
i=1 ci × bi∑n

i=1 ci
, c =

∑T
i=1 ci

T
(3.24)

c = c ∗ T

M
(3.25)
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Chapter 4

Related Work

This chapter will introduce relevant publications regarding dental caries detection,
focusing mainly on detection from bitewing radiographs. Following that, we will
briefly introduce methods for the segmentation of dental restorations.

4.1 Dental caries detection

Since 2017, more than ten publications have been released regarding automatic
caries detection from images [50]. They differ in how they approach caries local-
ization and the types of images they use. The following images have been used:
Near-Infrared Transillumination images [51, 52], camera photographs [53], and
X-ray images, which may be further classified into bitewing [54, 55, 56, 57, 16],
panoramic [58], and periapical X-ray images [59].

All the related publications can be divided into three groups based on their
approach to caries localization: Manual detection and classification, dental caries
segmentation, and dental caries detection.

4.1.1 Manual detection and classification

This section introduces publications that approached caries detection in the follow-
ing manner: First, they crop individual teeth from the X-ray image, using manual
cropping or non-machine learning computer vision techniques. After the tooth is
extracted from the image, it is labeled by a professional. A classifier is trained on
those image patches to decide if it contains a carious lesion.. First attempts to use a neural network for caries detection date back to 2008,

when Kuang et al. [60] proposed an approach based on passing a patch from
an image to a classifier, which then decided if the patch contains caries or
healthy enamel. Even though the performance of the proposed neural network
was surpassed by 6.72% by kernel SVM, it was still able to outperform an
ordinary dentist by more than 5%. It was only 6% worse than an experienced
individual..Moran et al.[54] used histogram equalization, Otsu’s thresholding, and mor-
phological operations to extract individual teeth from bitewing images. After
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4. Related Work .......................................
the teeth had been cropped from the image, the dataset was labeled by assign-
ing one of three categories to each tooth. The categories were: Normal teeth,
incipient lesions, and advanced lesions. Moran et al. processed a total of 112
radiographs this way, resulting in 480 teeth with corresponding annotations.
They trained the ResNet and Inception model to perform the classification
task, and the best-achieved accuracy was 73.3% [54]..Mao at al. [57] made a similar preprocessing approach as Moran, only this
time extracting unilateral tooth images instead of the whole tooth. A total
of 3716 images of unilateral teeth were obtained. AlexNetsed was used for
classification and reached a 90.3% accuracy.. Lee et al. [59] published a similar approach, however, with periapical images.
A dataset with 3000 images was created manually by cropping out teeth from
the X-ray image, keeping only those without extensive dental restorations.
Two teeth at once were also extracted from the radiograph in the same
process. After obtaining this dataset, they trained GoogLeNet and Inception
v3 architecture classifiers, reaching an accuracy of 89% for molars and 82%
for images with both premolars and molars.

4.1.2 Dental caries segmentation

There are publications where the authors approached the task of caries localization
as semantic segmentation. The advantage of this approach is the pixel precision
of the lesion detection. On the other hand, creating a similar dataset is very
time-consuming. An example of a dataset annotated in a pixel-wise manner is
depicted in Figure 4.2 as well as predictions of a model proposed by Cantu [55].. Cantu et al. [55] created a dataset of 3686 bitewing images. Three dentists

drew a polygonal-shaped box over caries independently in each image. In
the case of a unanimous decision, the annotation was kept in the dataset.
Otherwise, the fourth dentist reviewed the annotation and decided if it should
be kept or deleted. Cantu et al. used the U-Net model with EfficientNet B5
as a backbone. They then evaluated the model per pixel, and its performance
was compared against seven dentists, outperforming their mean performance
in every metric.. Lian et al. [58] chose the same approach as Cantu but used panoramic images.
In comparison with Cantu, following the segmentation, they cropped the
region of interest around the segmented lesion and classified caries into one
of four categories as described in Section 2.2.3. They achieved an IOU score
of 0.785 on the segmentation task. In comparison, the best performing dentist
achieved an IOU of 0.717. In the classification task, the model outperformed
the average dentist’s performance.. Lee et al. [15] approached the problem uniquely. Their dataset, consisting of
304 bitewing radiographs, was densely annotated by polygons, denoting the
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Figure 4.1: Annotated bitewing radiograph and the same image post-processed,
source [15]

position of dental caries, enamel, dentine, pulp, and gutta-percha restorations.
The result of this annotation can be seen in Figure 4.1. They used two
independent U-net models to predict the position of caries and remaining
structures in the image. The output of both models was post-processed and
merged. Even though the model achieved an F1 score of 0.641, which is
low compared to other publications, predictions of the model helped dentists
improve their sensitivity ratio by 7 - 10%.

4.1.3 Dental caries detection. Srivastava et al. [16] trained a fully convolutional neural network with over
100 layers on a dataset containing more than 3000 bitewing radiographs. They
denoted the position of tooth decay in a pixel-wise manner. Even though the
model predicts output masks in a semantic segmentation fashion, the output is
post-processed by fitting a minimal bounding rectangle around the prediction,
as can be seen in Figure 4.3. After that, the model is evaluated by computing
the IOU of the rectangle with the ground truth polygon. If the IOU is greater
than 0.8, the detection is considered positive. Srivastava et al. claim that their
model considerably outperforms each of the three dentists included in the
study. Detailed results are in Table 4.1.. The same author and Kumar [19] published another paper, where they changed
the model to U-Net, which was trained on an extended dataset of 6000 bitewing
X-ray images. The authors tested the hard example mining approach, but it
led to a decrease in performance. Even though U-Net architecture usually
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Figure 4.2: Sample of data and predictions of the model by

Metric Model [16] Model [19] Dr. 1 Dr. 2 Dr. 3

Recall 0.805 0.70 0.477 0.433 0.344

Precision 0.615 0.53 0.63 0.815 0.891

F1-Score 0.70 0.614 0.54 0.56 0.50

Table 4.1: Results of models proposed in [16] and [19], compared with three dentists,
modified

achieves better results on publicly accessible benchmarks [24, 61], and the
size of the dataset increased twofold, the model’s performance dropped by
15%, see Table 4.1. There is no information available about the evaluation
protocol used by Kumar [19], nor about the IOU threshold needed to consider
a prediction to be correct. This makes it hard to estimate the cause of the
performance drop.. Barakdar et al. [56] did both semantic segmentation and object detection with
a dataset of 621 bitewing images available for both of those tasks. They claim
to use U-net for segmentation and VGGNet for object detection. However, the
paper does not mention how they modified the VGGNet architecture for object
classification to perform an object detection task. The object detection results
were evaluated against five professionals in dentistry with different years of
experience. The model outperformed two dentists with two and three years
of experience while being outperformed significantly by all three dentists
with ten years of experience. The reported precision of the model is 0.78,
recall=0.77 and F1 score of 0.78. No information about the overlap used to
consider predictions to be correct is included in the paper. We assume it was
set to be 0.5.. Bayraktar et al. [62] solved only the object detection task on a dataset of
1000 bitewing images labeled by two experts with more than ten years of
experience. With YOLOv3 architecture model, they achieved AP@.5 = 0.872 .
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Figure 4.3: Predictions of the model proposed by Srivastava et al., source [16]

4.2 Dental restorations segmentation

To the author’s knowledge, there are no available publications regarding the
segmentation of dental restorations in bitewing radiographs. Therefore, we will
introduce two methods that segment dental caries from panoramic X-ray images.
Figures 4.4, ?? contain samples of images used for restoration segmentation. In
addition, we will mention two publications where restoration detection was a minor
part of the work..Mao et al. [57] classified dental segmentations in previously extracted image

patches with unilateral teeth.. Lee et al. [15] did not focus directly on the segmentation of restorations, yet
it was one of the classes segmented out by their U-net architecture. There
are no metrics available regarding the algorithm’s performance on dental
restorations.. Abdalla-Aslan et al. [18] used methods of classical computer vision to segment
out restorations in panoramic images. Their pipeline consisted of: Adaptive
gaussian thresholding, morphological operations, and deleting regions in
peripheral areas of the image. The final algorithm had the precision and
sensitivity of 0.33 and 0.946, respectively. After successful detection, the
restoration was classified as: dental implant, crown, amalgam filing, etc.
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Figure 4.4: Results of segmentation algorithm pro-
posed by Yeshua et al.[17]

Figure 4.5: Cropped region
from panoramatic image with
multiple restorations, source
[18]

. Yeshua et al. [17] solved the same problem as Abdalla-Aslan. Even the
approach was more-less the same, except theirs achieved a precision of
0.568. They classified detected areas similarly to Abdalla-Aslan, having an
extra category for false detections. After the removal of false detections, the
precision was boosted to 0.98.
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Chapter 5

Dataset

In total, MDDr. Tichý and his team created two datasets. One dataset was used to
detect dental caries and the other for semantic segmentation of dental restorations.
The majority of work was done on the first-mentioned set of data.

5.1 Dental caries

MDDr. Tichý and his team began working on the datasets in September of 2021,
along with the beginning of work on this thesis. This led to an opportunity to
discuss the format of the data. We decided to annotate every dental caries lesion
with a minimal bounding box. The annotation process was conducted in the
Computer Vision Annotation Tool (CVAT), running on the Faculty of biomedical
informatics server. The web address is www.gdiag.fbmi.cvut.cz.

While denoting the position of the carious lesion, the annotator tried to be
consistent with the following guidelines:. Carious lesion is marked by a rectangle. The rectangle should contain the

entire lesion while remaining as small as possible..When the lesion is on the proximal surface, and if both teeth are infected,
draw a separate box for each.

Due to constant work on the dataset, we decided to use the same data as long as
there was no major update that would lead to a release of an improved dataset. In
total, we did six major releases. Let’s call these releases the stages of the dataset.
This ensured that we were able to compare the performance of our models to each
other in different stages of the dataset.

First stage

In the very first stage MDDr. Tichý instructed a group of dentistry students
on how to approach the annotation to get as homogenous dataset as possible.
They then annotated a couple of images under his supervision before continuing
independently. Dental X-ray images were uploaded into CVAT and divided into
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Figure 5.1: The environment of CVAT with annotated carious lesion and dental
restorations

multiple projects, where each project contained between 400-800 images. This
was essential due to technical limitations regarding exporting and uploading X-ray
images from a dental database. We further split each project into jobs consisting
of 100 images each and assigned them to a particular student. We had 1695 X-ray
images at our disposal with 2416 dental caries annotated after the first stage
was done. CVAT does not allow exporting and merging multiple tasks. Hence we
exported each task separately in a COCO format. We uploaded all images and files
with annotations to the CMP server. The server contains annotations combined
in one annotation.json file, carrying the information about the dataset in COCO
format and one folder with all the images. We checked the task for duplicates and
non-reviewed radiographs and removed those, which resulted in 1626 images with
2399 decay annotations. Out of those, 946 images contained at least one cavity.

Second stage

After an inspection of the dataset created in the first stage, we observed in-
homogeneity across the annotations. Some of the guidelines were violated, es-
pecially the one regarding caries on proximal surfaces. In addition, we observed
multiple overlooked lesions. This led us to a reconsideration of our approach to
labeling and MDDr. Tichý himself did all the annotation work from this moment
further on. After the second stage, the dataset was extended to 2599 non-duplicate
images containing 4328 annotations of tooth decay. During this stage, we did no
corrections of previous errors.
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Figure 5.2: Histogram of bonding boxes dimensions in the dataset

Third stage

MDDr. Tichý reviewed all images annotated in the first stage, removing as well as
adding an unspecified amount of annotations. In the end, the dataset consisted of
2599 images with 4575 annotations of dental caries.

Fourth stage

We uploaded another 1400 images onto the CVAT server. All the images were
downloaded and uploaded to the CMP server. We used a YOLOv5 model1 trained
on the third stage dataset to generate predictions for each image. Confidence
threshold maximizing F1 score on the validation dataset was used to filter out low
confidence predictions of the model. We used Voxel Fiftyone tool to upload all
1400 images and their respective predictions to CVAT, where those images were
split into two separate tasks. MDDr. Tichý reviewed all predictions and conducted
adjustments to bounding boxes and their removal and addition. According to his
personal statistics, there were roughly 200 predictions per 100 images. Around 20
predictions had to be added and removed to get the same quality annotations as
in stage three. The speed was the upside of using model prediction as a starting
point for the annotation process. The annotation was done in approximately half
the time required to do the annotation without model predictions. In total, 3500
images were available subsequent to this stage. After removing corrupted images,
we got 3489 X-rays with 6087 annotations.

1For further information about the performance of the model, see Table 8.3
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Figure 5.3: Histogram of the number of dental caries per image

Width [px] Height [px]

Image size 1068 795-847

Minimal box size 8 9

Maximal box size 384 315

Mean of box size 47.55 53.15

Standard deviation of box size 37.99 35.33

Table 5.1: Statistics of bounding boxes that denote position of carious lesions

Image augmentations

Fifth stage

In this stage, we finished the annotations of all 1400 images uploaded in stage
four, resulting in 3989 X-rays with 7257 annotations. We plotted a histogram
representing the distribution of the number of carries among images; it can be
noticed in Figure 5.3.

Sixth stage

We evaluated the model’s performance on the test, validation, and training part
of the dataset. Although the model used for prediction achieved AP@.5 = 0.72,
there were 1598 images with at least one false positive or false negative detection.
We decided that doing a second round of dataset review would be more beneficial
than further expansion of the size of the dataset. We focused only on erroneous
images and uploaded those 1598 images with no less than a single error to the
CVAT annotation tool for revision. During the time of writing this thesis, there is
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Figure 5.4: Bitewing X-ray image on the left, pixel mask of the X-ray on the right
(dental restorations have yellow color)

still undergoing work on the uploaded images. Therefore, we were not able to use
the sixth stage.

5.2 Dental restorations

This dataset consists of a subset of images used in the dental caries dataset. MDDr.
Tichý’s team annotated them in the CVAT tool by drawing a polygon around each
dental restoration. The work was done by the same group of dentistry students
as stage one of the caries dataset, and reviewed by a single fifth-year dentistry
student. Evaluation of the whole dataset performed by a single person should
ensure consistency among images. A total of 521 images were used to create
this dataset, and an inspection revealed that 387 radiographs contained at least a
single annotated restoration, and 134 had none. The dataset was exported from
CVAT in COCO format and saved on the CMP server. When working with the
data, we used a pixel mask instead of polygons to denote the position of dental
restorations. A sample of the dataset with a pixel mask is featured in Figure 5.4.

In Figure 5.5, we notice how many percent of the X-ray image consists of
restorations., which gives us an idea of how common dental restorations in our
data are. In Figure 5.6, we see how the size of each restoration is distributed. We
observe that most restorations are smaller than 2% of the image by inspecting this
Figure.
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5. Dataset..........................................
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Chapter 6

Project structure

6.1 Organization of the project

The object detection framework developed for this project was programmed in
Python 3.8.12 [63]. We structured it into multiple independent modules, which
can be swapped for their corresponding alternatives. This ensures maximal reuse
of the written code and allows further extension of this framework. This modular
approach was inspired by MetaAI research [64] and IceVision library [65]. The
framework’s modularity will enable us to use it for semantic segmentation or
classification problems. The core of the project is the deep-learning framework
PyTorch 1.11.0 [66], which is used to create and train neural networks. Although
there are many open-source libraries with object detection frameworks, relying
only on those libraries is far from optimal because the options to change the
program’s behavior are limited. We, therefore, decided to write our framework. It
handles all tasks required for training a model: Loading the data, model definition,
optimization of the model, tracking the progress of training, etc. Implementing
all models from scratch would be ineffective; therefore, we support third-party
models’ usage. However, only the bare model is used. Thus, we can change
everything except for the architecture of the model and its forward pass.

The project is divided into three folders: configurations, tests, and source (src).
The first-mentioned contains YAML files that are further dispersed into dedicated
folders based on the module they configure. At the root of the configuration folder
are train.yaml and test.yaml files, which define how to compose individual modules
to perform the target tasks. Hydra [67] handles the composition of configuration
files. The user can override the default configuration from the command line or
experiment.yaml file. The whole configuration pipeline can be seen in Figure 6.1,
and the project’s folder structure is in Figure 6.2.

6.1.1 Models

Models are implementations of one of the architectures described in section 3.9.
We can either fully implement them, or we can rely on open-source libraries. In
that case, we need to implement a function that transforms the data into the format
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Module module

train 

datamodule

Model

transfoms Transforms
composer

Datamodule

logger

trainer Trainer

Model trainingLogger 

callbacks Callbacks 

experiment 

Figure 6.1: Structure of modules and their configuration files

required by the third-party model.

6.1.2 Modules

Modules are a wrapper around the model and they are based on Pytroch-Lightning
modules [68]. In modules, we take care of the following:. Training and validation loop. Initialization of optimizer. Initialization of learning rate schedulers. Computing metrics. Logging metrics to a predefined logger. Transformations of outputs of models into the unified format

6.1.3 Transformations

Transformations are defined by their YAML configuration file. This file is passed to
the transformation composer class, which creates training and validation transfor-
mations, which are then passed to a data module. We relied on the Albumentations
library for individual image augmentations.

6.1.4 Data-Modules

Data modules are based on PyTorch-Lightning data modules. They consist of:. Dataset, where we load the data from the hard drive into the memory and
parse the file with saved annotations. After loading the data, predefined
transformations are applied.
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MT

configs - root folder with all configuration files

callbacks

datamodule

experiment

logger

module

trainer

transforms

train.yaml

src - folder with all source files

core - structures for data manipulation

data - utility functions for dataloaders and datasets

datamodules

models

modules

notebooks - jupyter notebooks for auxilary tasks

transforms - classes to compose transformations given by configuration file

utils - functions for logging, losses, data conversion

tests - contains multiple subfolders with unit tests for the program

Figure 6.2: Folder structure of the project

. Functions that transform the loaded data into the format required by the
model we are about to train.

. Definitions of data loaders, which are responsible for merging the data into
chunks, so-called batches.

6.1.5 Trainer

Trainer defines properties of the training, such as the number of GPUS used for
the training or a maximal number of epochs that training is allowed to undergo
before terminating.
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6. Project structure......................................
6.1.6 Callbacks

Callbacks add capabilities to the training pipeline without changing any code.
Typical ones that we used were: Definition of stopping criteria, adjusting policy for
saving weights of the model, or saving images with their predictions during the
training.

6.1.7 Logging

A logger is software capable of storing and visualizing logged values. In the
beginning, we used Tensorboard TODO, but soon we switched to Weights and
Biases [69], and used them throughout the rest of the thesis.

6.2 Additional open-source software

Throughout the project, we used the libraries mentioned above as well as the
following:.We used OpenCV [70] computer vision library during the segmentation of den-

tal restorations for operations such as: Adaptive thresholding, morphological
operations, etc.. Computer vision library Kornia [71] was used to perform morphological opera-
tions on PyTorch tensors quickly..MMDetection [72] provides an implementation of multiple object detection
models. We used their implementation of swin transformers, RetinaNet and
Faster-RCNN. During the computation of metrics, we used PyCOCOtools, an official [35]
implementation of MS COCO metrics. It had to be significantly modified to
provide us with the required capabilities.. To visualize predictions, we used Voxel Fiftyone [73]. The program can be on
a self-hosted server. We used this to share predictions of the model with MDDr.
Tichý, who was thus able to assess those and decide if the dataset contains
any erroneous annotations.. For model ensembling, we used the methods implemented by the author of
Weighted box fusion [49], and we further enhanced the capabilities of their
methods..We used YOLOv5 models from the Ultralytics repository. [74].
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Chapter 7

Methods

This chapter describes our proposed solution. It is divided into the following
blocks.

Section 7.1 describes the baseline solution. We mainly describe the training
protocol used in the remaining sections of the chapter.

Section 7.2 introduces a few changes to the training protocol previously de-
scribed in Section 7.1.

Section 7.3 inspects how the behavior of trained models changes when we
choose a differently sized backbone or use different weight decay.

Section 7.4 improves detection results by ensembling multiple models. Further-
more, we assess the importance of models used in the ensembling.

Section 7.5 proposes a deep learning and a non-deep learning approach to
segmentation of dental restorations.

7.1 Caries detection - baseline model comparison

Firstly, we implemented and tested multiple object-detection architectures and
compared them against each other on the currently available stage of the dataset.
The training protocol used throughout the training of all models is described by
the following:

7.1.1 Dataset

We used the first five stages of the dataset mentioned in Chapter 5. The dataset
was split into training, validation, and test parts, consisting of 70%, 15%, and 15%
of the dataset.

7.1.2 Image augmentations

The image was augmented by a single pipeline that applied the following transfor-
mations with corresponding probabilities p.
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7. Methods .........................................
.Normalize the image by subtracting the dataset’s mean and dividing by the

standard deviation of the dataset (mean= 0.37, std= 0.28), p = 1.. Resize and pad to 1024× 1024/896, p = 1..Horizontal flip, p = 0.5.. Vertical flip, p = 0.5.. Rotation, p = 0.3, rotation limit= 10◦.. Translation, p = 0.5, translation limit= 10% of the image size.. Gaussian blur flip, p = 0.3, kernel size from 7 to 31.. Gamma correction, p = 0.3, γ in range from 0.6 to 1.4.

The results of those augmentations can be observed in Appendix C.3.

We selected the dimensions to which the image will be resized based on some
architectures’ limitations, which require the input to be divisible by 128. In the
beginning, we used square images in order to ease the implementation. Following
that, we switched to rectangular images; however, no improvement in measured
metrics was observed. Based on the architecture, we noticed a decrease in the
GPU memory usage from 5% to 10%.

Computing power

All the computations were realized on the CMP cluster, consisting of multiple GPU
nodes, and the experiments were conducted on Boruvka and Zorn machines. They
both have 32 CPU cores, 256GB of RAM memory, and 8 NVIDIA GeForce GTX
1080-Ti graphics cards with 12GB of dedicated memory.

7.1.3 Neural network models

Multiple architectures of neural networks were used. As the work on the thesis
progressed, the amount grew larger. Thus, a wider variety of models can be seen
in the advanced stages of the dataset. We stopped using the YOLOv3 model after
Stage two since the YOLOv5 model performed superiorly in stages one and two,
see Tables 8.1 and 8.2.

All the models we used and their respective backbones are listed below.. YOLOv3 with Darknet-53 backbone.. YOLOv5 with the sixth generation of backbones. We used the small, medium,
large and extra-large versions of those backbones. In further text, we will
denote them as s6, m6, l6, and x6.. Faster-RCNN with Resnet50 and Resnet101 backbone; R50 and R101 abbrevi-
ations will be used.

48



....................... 7.1. Caries detection - baseline model comparison

model-backbone batch size model-backbone batch size

YOLOv5-s6 16 EfficientDet-D0 5

YOLOv5-m6 8 EfficientDet-D1 4

YOLOv5-l6 4 EfficientDet-D2 3

YOLOv5-x6 2 EfficientDet-D3 2

FRCNN-R50 2 EfficientDet-D4 1

FRCNN-R101 5 EfficientDet-D5 1

RetinaNet-swint 3 YOLOv3 - Darknet 4

RetinaNet-R50 4 - -

Table 7.1: Maximal batch sizes that fit into 12GB GPU for a given model

. RetinaNet (RetN) with Resnet50 and a tiny swin transformer (swint) back-
bones.. EfficientDet with D0,D1,D2,D3,D4 and D5 backbones.

Batch-size

The batch size differed based on the model’s architecture and the selected back-
bone. We always used the biggest batch size able to fit into the graphic card’s
memory. An overview of batch sizes for different combinations of architectures and
backbones is in Table 7.1. Note that those batch sizes allow for the accumulation
of four forward passes into the GPU memory.

Optimizers

We used the Adam optimizer during all experiments. The parameters β1, β2 were
set to 0.9 and 0.999 and weight decay was chosen to be 10−6. Since we could not
fit reasonably big batch sizes into the GPU, the optimization step was performed
every four forward passes. This should emulate a bigger batch size and increase
the chance of finding a global optimization minimum.

Learning rate (LR)

First, we experimented with different learning rates and used the LR Range
Test to find the initial LR. There was no difference in the final performance of
the model, and the number of epochs required to train the model did not differ
significantly. The test’s LR did not lead to model convergence in rare cases. We,
therefore, selected a constant initial LR of 10−4 and used a ReducedLROnPlateau
scheduler. The value monitored by the scheduler was the validation loss, and the
LR decreased by a factor of 5 when the improvement of the loss stalled for five
consecutive epochs.
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Termination condition

The training was halted when the AP@.5 did not increase throughout ten epochs,
but not earlier than after 50 epochs from the beginning of the training.

7.2 Improvements

In this section, we propose improvements to the training protocol as well as a
change to models trained with small batch sizes.

7.2.1 Training protocol changes

We replaced the Adam optimizer by AdamW with the same β1 and β2. Furthermore,
a CosineAnnealingLR rate scheduler was used. The half-period of cosine was set
to 70 epochs and the minimal LR to 10−7.

We trained multiple models from Section 7.1.3 on the stage five dataset with
this setting.

7.2.2 Group normalization

As mentioned in Section 3.5.3, batch normalization is superior to group nor-
malization when used with batch sizes greater than eight. Since the size of
EfficientDet-D4 and D5 models allowed us to use batch-size of one, we replaced
all batch-normalization layers with group normalization. The channels per group
parameter, for a given layer of group normalization, was set to 161, when the
number of channels in the layer was divisible by 16. Otherwise, we selected one of
the following values 2,4,8—prioritizing the higher of those.

The training was conducted according to the protocol described previously.

7.3 Model inspection

We conducted several experiments to assess the model’s behavior. All experiments
were done on the dataset created in the fifth stage with models, whose results are
in Tables 8.6, B.4 and B.5.

7.3.1 Size of backbone

We explored the influence of the backbone choice on the model’s performance.
For this purpose, we used the YOLOv5 model and trained it multiple times with
different backbones, including small, medium, and large backbones. The training
protocol that was used was approached as described in Section 7.1, including the
improvements mentioned in Subsection 7.2.1.

1Wu and He [40] showed this to be the best performing value when evaluated on ImageNet
dataset.
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.................................... 7.4. Model ensembling

7.3.2 Weight decay

We experimented with different values of weight decay. Eventually, we used the
Faster-RCNN architecture with ResNet50 backbone and YOLOv5 with medium size
backbone, and tested the following values of weight decay: 10−2, 10−4, 10−6, 10−8

on both models.

7.4 Model ensembling

In this section, we present our approach to model ensembling. First, we describe
the process of unifying the predictions into the same format. We then propose an
approach to finding optimal hyperparameters of the ensembling process. After
that, we suggest improving the ensembling methods by including area awareness.
In the end, we assess the importance of the diversity of architectures during the
ensembling.

7.4.1 Data-format

For every model included in the ensembling, we load its trained weights and
generate predictions on the dataset’s training, test, and validation parts. When
predicting, each image is rescaled to the size required by the corresponding model
and normalized. This leads to predictions being in the space of the transformed
image. Therefore we use inverse transformation to the rescaling to obtain coordi-
nates in the original image. This allows us to combine predictions regardless of
the model’s architecture. We found the confidence threshold that maximized the
F1 score and discarded all predictions with a confidence lower than that value.
The confidence value was stored alongside the predictions.

Predictions were saved into JSON files to be reused without the need to generate
new predictions. The format of the data is in Figure 7.1.

Confidence values maximizing F1 score differ (see Table B.2) across the models
m, we therefore normalize them by the following formula:

sj,i = sj,i maxl Sl

Sj
, j ∈ {1, ..., m}, i ∈ 1, ..., nj (7.1)

Note that Formula 7.1 is depended on the models included in the ensemble process,
and thus weights cannot be normalized before saving them to the JSON file.

Manual tuning

We performed the ensembling by the approach described in Section 3.10 with the
models mentioned in Table 8.4. The ensembling method was WBF. We estimated
the weights for ensembling from the results of the individual models, and for
the threshold value T , we selected values proposed by the authors of the WBF
ensembling method [49].
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{ "confidence threshold" : T

"filename" : {
"bboxes" : [[x1, y1, x2, y2],...],
"labels": [l1, l2,...],
"scores": [s1, s2,...],
"stage" : "test" / "val" / "train"
},

"filename2" : {...},
...
}

Figure 7.1: Structure of the data in .json file used to store model predictions
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Grid-search

Grid search over hyperparameters was performed in the following manner: Param-
eter search space was defined as can be seen in Table 7.2. We evaluated AP@.5
on every image of the validation dataset and averaged those values. The best
hyperparameters were selected and used for evaluation on the test dataset. The
whole workflow is shown in Figure 7.2.

7.4.2 Area-aware ensembling

We proposed a change to the weighting function in ensembling; see e Equation
3.20. The new weighting function described in Equation 7.2 is aware of the area
of the ensembled boxes. We hypothesized that this would increase the modeling
capacity of the ensemble methods.
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.................................... 7.4. Model ensembling

Parameter minimal value maximal value step

Model weight 0.12 1 0.22

IOU T 0.3 0.9 0.05

Sigma 0.3 1 0.1

Table 7.2: Hyperparameter search-space for area-aware model ensembling

Parameter minimal value maximal value

Model weight (small, medium, large) 0.01 1

IOU T 0.05 1

Table 7.3: Hyperparameter search-space for model ensembling

The Equation 3.20 was modified to:

S =
M⋃

i=1

Sif(Bi, wi)
F

, f(Bi, wi) =


w1, area(Bi) ≤ 322

w2, 322 < area(Bi) ≤ 962

w3, 962 < area(Bi)
(7.2)

We tried to perform a grid search with the Equation 7.2 used for the weighting of
boxes, but the number of parameters grew exponentially, making the grid search
computationally untractable. Therefore, we used the Optuna optimization library
to perform this task. The search space is in Table 7.3; please note that the search
space became continuous contrary to the previous.

7.4.3 Assessing the importance of different models in
ensembling

To get an insight into what affects the performance of model ensembling, we
compare the following: an ensemble of multiple models with the same architecture
and backbone, an ensemble of models with the same architecture and different
backbones, and an ensemble of different architectures. All models selected for
ensembling were trained on the stage five dataset, including the changes proposed
in Section 7.2.1. The results of a subset of those models are in Table 8.6.

After selecting the models, we ensembled them using the WBF method. Model
weights and IOU threshold T value were optimized on the validation dataset
as described in Section 7.4.1. The Optuna optimization software was used to
find those, where we set the search space to be in the range from 0 to 1 for all
model weights as well as for the IOU threshold T . The optimization process was
terminated after 3000 trials.

After obtaining the ensembles, we assess the importance of each model included
in the ensemble by a method based on functional analysis of variance (FANOVA)
[75]. We used an already implemented solution that is a part of the Optuna library
[76].
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The same architecture and backbone

We used the YOLOv5 architecture with a medium sized backbone, since multiple
models were trained for experiments mentioned in Section 7.3. The summary of
used models is available in Table 7.4.

The same architecture different backbones

We used the YOLOv5 architecture again but included two models with a small
backbone, three with a medium-sized backbone, and three with the large backbone.
When choosing those, we tried to match the performance of the selected models
with those chosen previously. This was done to ensure the maximal comparability
of those two ensembles.

Different architecture

Here, we used the best model we had at our disposal. The ensemble consisted of
the following models: Two YOLOv5-large, two YOLOv5-medium, YOLOv5-small,
EfficientDet-D1, EfficientDet-D3, RetinaNet-swint, and Faster-RCNN-Resnet50.
Even though we picked the best available models, the difference in AP@.5 against
YOLOv5-all was 2$, as can be seen in Table 7.4, where we denoted a group of
models with different architectures as Mixture.

Experiment num.models mean std min max

YOLOv5-m 8 0.696 0.014 0.668 0.719

YOLOv5-all 8 0.693 0.017 0.659 0.719

Mixture 10 0.707 0.014 0.676 0.725

Table 7.4: Comparison of the models involved in ensembling by statics of their AP@.5
metrics

7.5 Dental restorations segmentation

In this section, we propose a non-deep learning method for the segmentation of
dental caries. We tune the hyperparameters of this approach to achieve the best
possible performance. Following that, we switched our approach and trained a
deep learning model called U-Net.

7.5.1 Non-deep learning approach

We decided to test the approach proposed by Abdalla-Aslan, and Yeshua [18, 17]
as described in Section 4.2. This means that we defined a pipeline of image
processing operations, where we:. Thresholded the image: We tried Otsu’s thresholding method and Gaussian

blur with kernel size Kb applied prior to that. Furthermore, Gaussian and mean
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Hyperparameter minimal value maximal value step

Kt 33 83 10

Kb 1 26 5

T 1 15 2

Kd 41 81 20

Ko 1 36 5

Table 7.5: Hyperparameter search space for restorations segmentation pipeline

adaptive thresholding methods were evaluated, where we tested different
kernel sizes Kt and threshold values T .. Removed predicted pixels at the border of the X-ray image: Bitewing X-ray
images usually do not have a rectangular shape, as illustrated in 2.2. Bitewing
radiographs are therefore padded with black color to obtain the rectangular
shape. This leads to a high contrast at the border of the radiograph, which gets
detected by adaptive thresholding methods. Therefore, we detect this padding
and morphologically dilate it by the square kernel of size Kd ×Kd. Border
pixels obtained by the dilation are removed from the thresholded image.. Applied morphological opening: We apply morphological opening to filter out
falsely detected regions; we use a square-shaped kernel with size Ko.

The pipeline defined above has four hyperparameters that can be tuned and
three thresholding methods. Consequently, we define a grid-shaped search space
as can be observed in Table 7.5. Note that when we searched for the value of Kt,
we did not search for Kb and vice versa. The dataset was split into two equally-
sized parts, called tune and test. We evaluated the IOU metric on each image of
the tune part of the dataset and averaged it for each set of hyperparameters. We
selected the best hyperparameters based on the average IOU value and used those
to evaluate on the test part of the dataset.

7.5.2 Deep-learning approach

Model training

The dataset was split into training, validation, and test parts with a 70:15:15 ratio.
For the dataset’s training part, we used augmentations described in Section 7.1.2.
Resizing of images was removed from the augmentation pipeline, and for that
reason we worked with full-sized radiographs. Images in the validation and test
part of the dataset were only normalized. We used the U-Net architecture model
as proposed by author [13], only changing the depth to five downscaling layers. As
a loss function, we used Soft-dice loss. The LR value of 10−2 was used together
with ReduceLROnPlateau scheduler. The model was trained for 50 epochs by the
Adam optimizer. At the end of the training, we selected the best model according
to IOU on the validation dataset and evaluated its performance on the test dataset.
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Post-processing

We used post-processing methods inspired by the non-deep learning approach
on the best-performing model. The image was first morphologically opened by a
square kernel with a size of KO and then closed by a kernel size of KC .

Since there were two hyperparameters involved, we performed a grid-search,
searching for the kernel of size from 1 to 41 with the step size of 4. Firstly, we
saved predictions for all images in the validation dataset. This ensured that we
did not have to pass the image through the U-Net model for each parameter.
Post-processing with all defined kernel values was applied. The best-performing
hyperparameters were selected, and post-processed predictions were evaluated
on the test dataset.

7.5.3 Model training improvements

We tried the following changes to the model training pipeline:. AdamW optimizer was applied instead of Adam.. CosineAnnealingLR scheduler was used. The half-period of cosine was set to
40 epochs and the minimal LR was set to 10−7.. Binary cross-entropy loss was tested instead of Soft dice loss as well as a
combination of Soft dice loss with BCE..We removed the maximal amount of epochs and instead used the IOU value
on the validation set as a stopping criterion. Whenever we observed no
improvement of IOU for ten epochs, the training was stopped.

Following the training, we performed the same post-processing. We found the
best hyperparameters by the Optuna optimization library. The search space ranged
from 1 to 41 for both kernels.
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Chapter 8

Results

This chapter states the results of the proposed methods.

In Section 8.1, we show the results of the trained models on different stages of
the dataset.

Section 8.2 contains results of improvements of the training pipeline proposed
in Section 7.2.1.

In Section 8.3, we depict how different backbones’ sizes and weight decay
affected the model’s performance.

Section 8.4 reports the influence of ensembling of neural networks. Note that in
this section, we obtain the best-performing model.

Section 8.5 contains results of algorithms for segmentation of dental restora-
tions.

In Section 8.6, we compare the results of our best-performing model with the
literature.

In the final Section 8.7 of this chapter, we show figures to showcase the perfor-
mance of our models.

8.1 Model comparison on different datasets

This section compares the performance of different model architectures and their
backbones. It is divided into five subsections corresponding to five stages of the
dataset. For more details about the dataset, see Section 5.1. For each of the five
stages of the dataset, we report the average precision metric on the test part of
the dataset. The training of all models was conducted according to the training
protocol described in Section 7.1. Tables in this section use abbreviation described
in Section 7.1.3.

8.1.1 Stage one dataset

In Table 8.1 the reader can see results obtained on the first stage of the dataset.
None of the trained models performed well, especially the Faster R-CNN model

57



8. Results ..........................................
achieved low average precision values. We attribute that to the inhomogeneity of
the dataset (as described in Section 5.1) and to the low amount of data.

Model AP AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

FRCNN-R50 0.045 0.168 0.0064 0.109 0.187 0.141

YOLOv3 0.078 0.238 - - - -

YOLOv5-l6 0.082 0.258 0.02 0.211 0.309 0.327

YOLOv5-x6 0.087 0.268 0.04 0.204 0.324 0.302

EfficientDet-D4 0.081 0.242 0.007 0.198 0.234 0.287

Table 8.1: Comparison of the trained models on the stage one dataset

8.1.2 Stage two dataset

Even though the dataset grew in size by more than 50% since stage one, from
Tables 8.1 and 8.2, we see that the YOLOv3 model improved by less than 10% . On
the contrary, the performance of YOLOv5 model improved by circa 25%. Due to the
low performance of YOLOv3 and its similarity with superior YOLOv5 architecture,
we will not experiment with YOLOv3 in the following sections. In the last two rows
of Table 8.2, we can see the discrepancy in the average precision when evaluated
on the test and train part of the dataset. This ensures us that the model can fit the
data well, and we only need to alleviate the generalization gap.

Model AP AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

YOLOv3 0.093 0.258 - - - -

YOLOv5-l6 0.097 0.318 0.03 0.281 0.310 0.378

YOLOv5-x6 0.105 0.337 0.05 0.278 0.323 0.392

EffDet-D4 0.089 0.296 0.01 0.272 0.291 0.342

EffDet-D4, train 0.421 0.839 0.362 0.758 0.852 0.801

Table 8.2: Comparison of the trained model on the stage two dataset

8.1.3 Stage three dataset

As mentioned in Section 5.1, there were no additional data added in this stage,
but MDDr. Tichý did a review of the dataset as well as corrected any erroneous
annotations. The dataset review increased the AP@.5 of the EfficiendDet-D4 model
by 76%, as can be seen in Tables 8.3 and 8.2. This significant performance gain
suggests that the low performance of models in Tables 8.1 and 8.2 was caused by
errors in the dataset.

Performance of EfficentDet and YOLOv5 models evaluated on training part of
dataset can be found in Table B.1.

58



.......................... 8.1. Model comparison on different datasets

Model AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

YOLOv5-l 0.249 0.734 0.631 0.132 0.598 0.671 0.607

EffDet-D4 0.168 0.666 0.525 0.041 0.435 0.606 0.527

Table 8.3: Comparison of trained models on the test part of stage three dataset

8.1.4 Stage four dataset

The average precision of models trained on this dataset stage is in Table 8.4.
Furthermore, precision-recall values for confidence threshold maximizing F1 score
are in Table B.2, which is located in Appendix. Even though we introduced multiple
new architectures and revisited Faster R-CNN with two different backbones, the
performance gain obtained in this stage was not as prominent as the one observed
when moving from stage three to stage four.

In Table 8.4, we can observe how different architectures differ in their per-
formance on small, medium-sized, and large boxes. Comparing YOLOv5-m6 and
RetinaNet-ResNet50 models shows that their overall performance (measured by
AP@.5) almost matches, but when comparing their AP@.5L metrics, we see a 15%
difference. We try to exploit this behavior by the approach described in Section
7.4.2.

Model AP AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

FRCNN-R101 0.285 0.675 0.198 0.568 0.717 0.772

FRCNN-R50 0.284 0.658 0.204 0.557 0.695 0.77

YOLOv5-m6 0.288 0.644 0.209 0.593 0.667 0.766

YOLOv5-l6 0.284 0.644 0.203 0.551 0.701 0.612

EffDet-D4 0.251 0.605 0.15 0.49 0.677 0.545

RetN-swint 0.266 0.66 0.175 0.497 0.721 0.786

RetN-R50 0.263 0.643 0.174 0.547 0.696 0.663

Table 8.4: Performance comparison of multiple models trained on the stage four
dataset

8.1.5 Stage five

The results in Table 8.5 show a steady improvement compared to those in Table
8.4. We see that YOLOv5-l6 achieved worse results than in stage four. This result
is not emphasized since we believe that if trained multiple times, the results of
this architecture would eventually improve. On the contrary, we observe that
the EfficientDet-D4 model lagged behind YOLOv5 in all stages of the dataset.
Therefore, in Section 7.2.2 we experiment with usage of group normalization.

59



8. Results ..........................................
Model AP AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

FRCNN-R101 0.328 0.71 0.263 0.613 0.742 0.816

FRCNN-R50 0.334 0.715 0.273 0.595 0.757 0.809

YOLOv5-m6 0.346 0.708 0.284 0.622 0.744 0.754

YOLOv5-l6 0.295 0.625 0.232 0.533 0.691 0.489

EffDet-D4 0.288 0.648 0.219 0.548 0.699 0.655

RetN-swint 0.328 0.72 0.241 0.565 0.776 0.775

Table 8.5: Performance comparison of multiple models based on mean average
precision metrics

8.2 Improvements

8.2.1 Training protocol improvements

The average precision of models trained with incorporated improvements proposed
in Section 7.2.1, can be seen in Table 8.6. Furthermore, average recall values can
be observed in Table B.4, which is located in the Appendix, together with a table
of precision-recall values for a given confidence thresholdB.5.

Even though the best performing model in Table 8.6 improved negligibly over
the best performing one in Table 8.5. We notice that models achieved better results
on average along with more stable training. In this stage, we newly used YOLOv5-s
and EfficienDet-D1. Despite both being low-parameter networks, they performed
almost on par with others.

Model AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

YOLOv5-l6 0.347 0.796 0.725 0.291 0.597 0.772 0.753

YOLOv5-m6 0.343 0.795 0.719 0.287 0.636 0.752 0.785

YOLOv5-s6 0.327 0.79 0.697 0.281 0.559 0.739 0.826

Effdet-D1 0.319 0.787 0.701 0.251 0.584 0.752 0.808

FRCNN-R50 0.311 0.788 0.705 0.231 0.629 0.737 0.788

FRCNN-R101 0.316 0.792 0.688 0.239 0.563 0.732 0.793

RetN-swint 0.325 0.803 0.723 0.249 0.579 0.78 0.758

Table 8.6: Comparison of AP values between different models trained by an improved
training protocol

8.2.2 Group normalization

Chart of AP@.5 for EfficientDet-D4 models with batch-normalization layers and
group normalization layers can be found in Figure 8.1. Model using batch nor-
malization achieved AP@.5 of 0.634 on the test dataset, outperforming the model
using group normalization with AP@.5 = 0.694. Despite the performance increase
induced by group normalization, the EfficientDet-D4 model performed comparably
with the models in Table 8.6. Therefore, we stopped using this model further on,
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because the training of this model was also more computationally demanding than
the rest of the models.

Figure 8.1: Difference in AP@.5 amog EfficientDet-D4 model with batch normalization
and group normalization

8.3 Model inspection

8.3.1 Size of backbone

The table 8.7was computed from the statistics of 29 models, where each type
of backbone was represented by 8 to 12 models. The columns mean, std, max
and min denote statistics of AP@.5 obtained by trained models on the test set.
Furthermore, we can inspect the size of a given backbone, which is induced by its
number of parameters (Par) and floating-point operations FLOPs. The last column
of Table 8.7 shows the average time required to train the given backbone for 60
epochs.

Backbone Mean Std. Max Min Par[M] FLOPs[G] Time[h]

Small 0.68 0.0197 0.651 0.697 12 21 2.1

Medium 0.696 0.0126 0.669 0.719 35 63 3.5

Large 0.703 0.0136 0.681 0.725 76 141 5.2

Table 8.7: Comparison of AP.@5 metric for different backbones of YOLOv5 architecture

8.3.2 Weight decay

In Figures 8.2 and 8.3, we see the comparison of Faster-RCNN and YOLOv5 models
using different weight decay. The results obtained by evaluating trained models on
the test part of the dataset did not differ across the values of weight decay.
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Figure 8.2: AP@.5 of Faster-RCNN
model with varying weight decay values.
The metric is computed on the validation
part of the dataset during training.

Figure 8.3: AP@.5 of YOLOv5 model with
varying weight decay values. The metric
is computed on the validation part of the
dataset during training.

8.4 Ensembling

In this section, we show the performance of model ensemblings with handpicked
parameters 8.4.1as well as ensemblings obtained by parameters found by a grid-
search. Furthermore, we report how the diversity of models involved in the
ensembling affects its results.

8.4.1 Manually-picked parameters

In Table 8.8, the reader can see the results obtained by handpicking circa ten
sets of hyperparameters based on our qualified guess. We then evaluated the
hyperparameters on the validation part of the dataset, and the best-performing
ones were selected and evaluated on the test part of the dataset. The first group
(G1) contained the following models trained on the stage four dataset: RetinaNet-
swint, YOLOv5-m, and RetinaNet-ResNet50. The second group (G2) was composed
of Faster R-CNN-Resnet101, YOLOv5-m, and RetinaNet-swint. All of those models
were trained on stage four of the dataset. From the Tables 8.8 and 8.4, we can
infer that ensembling of models improved AP@.5 by 3% over the best performing
model included in the ensembling.

Models AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

G1 0.303 0.776 0.694 0.216 0.605 0.729 0.803

G2 0.305 0.783 0.695 0.218 0.598 0.733 0.807

Table 8.8: WBF ensembling of multiple models, where we handpicked the parameters
of the ensembling process. The models were trained on the stage four dataset.

8.4.2 Grid search results

All models included in the ensembling were trained on the stage-five dataset.
Therefore, their results are in Table 8.5.

The best hyperparameters for a given ensembling method found by a grid search
are in Table 8.9. We omitted parameter σ used only in S-NMS from the table. Its
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optimal value, according to the grid search, was 0.8. The average precision of
models ensembled with parameters from Table 8.9 is available in Table 8.10 and
average recall values are in Table B.6. Precision and recall values based on the
confidence threshold that maximizes F-score can be seen in Table B.7. In Tables
8.9 and 8.10, we used notations introduced in Section 3.10. By WBF-A, we refer
to the method proposed in Section 7.4.2, where S,M,L mean weights for small,
medium-sized, and large boxes.

Method FRCNN YOLOv5 RetN FRCNN T

R50 m6 swint R101

NMS 1 0.4 0.4 0.85 0.6

SNMS 1 0.12 0.12 0.12 0.7

NMW 0.85 0.25 0.70 0.85 0.45

WBF 1 0.4 0.85 0.85 0.65

WBF-A S 0.94 0.31 0.98 0.72 0.64

WBF-A M 0.77 0.47 0.85 0.69 0.64

WBF-A L 0.84 0.31 0.88 0.91 0.64

Table 8.9: Hyperparameter values of ensembling methods found by a grid-search

Method AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

NMS 0.346 0.818 0.735 0.28 0.618 0.775 0.829

SNMS 0.348 0.807 0.722 0.295 0.609 0.758 0.819

NWM 0.364 0.829 0.759 0.302 0.641 0.802 0.854

WBF 0.378 0.832 0.77 0.323 0.663 0.807 0.875

WBF-A 0.376 0.832 0.768 0.318 0.651 0.806 0.875

Table 8.10: Average precision of models ensembled with parameters from Table 8.9

8.4.3 Assessing the importance of different models

In this section, we present ensembling results based on the approach from Section
7.4.3. In Tables 8.11, 8.12 and 8.13, we see results of ensembles composed of
different models. Note that the ensembling of varying architectures (Mixture)
achieved the best results out of all models evaluated in this thesis. We will use this
model to compare our results with related publications.

From Table 8.11, we can see that the usage of varying backbones increases the
gain in average precision by circa 1.5%, when compared to the ensembling with
the identical backbones. Furthermore, using different architectures increased
the performance by an additional 3.2%. Please note that models included in
ensembling with different architectures had an average AP@.5 by 2% higher than
models included in the former two ensembling approaches, see Table 7.4. If we
adjust the results for that, we expect a 1.2% gain solely from using models with
varying architecture.
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The importance of individual models in the ensembling is in Figure 8.4 for

Mixture architectures and in Figures C.5, C.6 located in Appendix for the remaining
two groups of models.

Models AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

Mixture 0.389 0.838 0.774 0.338 0.665 0.811 0.876

Y5-mix 0.379 0.819 0.75 0.34 0.636 0.79 0.84

Y5-m 0.368 0.812 0.741 0.329 0.648 0.775 0.844

Table 8.11: Average precision of ensemble models

Models AR AR@.510 AR@.5 AR@.75 AR@.5S AR@.5M AR@.5L

Mixture 0.586 0.917 0.978 0.582 0.946 0.991 0.991

Y5-mix 0.579 0.911 0.959 0.599 0.929 0.972 0.972

Y5-m 0.562 0.906 0.949 0.572 0.909 0.964 0.964

Table 8.12: Average recall of models ensembled by parameters from Table 8.9

Models Precision Recall F-score Confidence threshold

Mixture 0.751 0.7 0.725 0.294

YOLOv5-mix 0.728 0.69 0.708 0.241

YOLOv5-m 0.726 0.67 0.697 0.272

Table 8.13: Precision, recall, and F-score based on the confidence threshold for
different ensembling methods

8.5 Dental restorations segmentation

In the following section, we report results obtained by a non-deep learning pipeline
for dental restorations segmentation proposed in Section 7.5.1, as well as deep
learning model U-Net trained according to the description in Section 7.5.2.

8.5.1 Non-deep learning approach

Hyperparameters ensuring the best performance on the validation part of the
dataset are in Table 8.14. The performance of the pipeline given the parameters in
Table 8.14 on the test dataset can be seen in Table 8.15. The segmentation of the
image together with output after each auxiliary stage is in Figure 8.5.
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Figure 8.4: Importance of different models during ensembling with different architec-
tures

(a) : Gaussian adaptive thresholding

(b) : Mean adaptive thresholding

Figure 8.5: From the left: X-ray image, ground-truth pixel mask, thresholded image,
removal of border pixels, morphological opening

Hyper-parameter Adaptive mean Adaptive Gaussian Otsu’s

Kt 71 83 -

T 3 3 -

Kd 41 41 61

Ko 31 36 36

Kb - - 21

Table 8.14: Best hyper-parameters for non-deep learning pipeline
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Model Dice IOU

Adaptive mean 0.364 0.314

Adaptive Gaussian 0.328 0.274

Otus’s thresholding 0.102 0.088

Table 8.15: Results of non-deep learning approach to dental restorations segmentation
given the hyperparameters in Table 8.14

8.5.2 U-Net

Two U-Net models were trained with the settings proposed in Section 7.5.2. We
will call them U-Net-baseline (U-Net-B) and U-Net-improved (U-Net-I). With the
letters PP, we denote that the model’s output was post-processed by the approach
described in Section 7.5.2. In Figure 8.7, we see IOU evaluated on the validation
dataset throughout the model training, where each line corresponds to a different
loss function. We notice that a combination of BCE and soft-Dice loss achieved the
highest IOU results, while soft-Dice loss diverged after a promising performance
at the beginning of the training.

The best hyperparameters for post-processing of both models are in Table 8.16.
In Figure 8.8, we observe how the choice of different hyperparameters for the
post-processing pipeline affected the performance of U-Net-B model.

Figure 8.6 shows the segmentation results and compares those with the ground
truth mask.

(a) : Baseline U-Net model

(b) : Improved U-Net model

Figure 8.6: From the left: X-ray image, ground-truth pixel mask, the output of
the model, output processed by morphological opening, output post-processed by
morphological opening and closing.

66



.............................8.5. Dental restorations segmentation

Figure 8.7: IOU throughout the training of U-Net model for different loss functions
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Figure 8.8: Value of IOU metric based on the size of kernels Ko, Kc in morphological
operations that were used for post-processing

Parameter Ko Kc

U-Net 37 25

U-Net-I 33 5

Table 8.16: Optimal parameters for
model post-processing found by a grid-
search

Model Dice IOU

U-Net-B 0.663 0.575

U-Net-B-PP 0.714 0.623

U-Net-I 0.747 0.662

U-Net-I-PP 0.760 0.676

Table 8.17: Results of U-Net models
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Author Precision Recall F1-Score Accuracy AP@.5

This thesis 0.751 0.7 0.725 0.726 0.774

Srivastava et al. [16] 0.615 0.805 0.7 - -

Kumar & Srivastava [19] 0.7 0.53 0.614 - -

Bayrakdar et al. [56] 0.78 0.77 0.78 - -

Bayraktar et al. [62] - 0.72 - 0.946 0.872

Cantu et al. [55] - 0.75 0.73 0.8 -

Table 8.18: Comparison of results of this thesis with results in related publications

8.6 Comparison of results with related publications

In Table 8.18, we see a comparison of caries detection results of this thesis
contrasted to results achieved by related works. We compared with only those who
selected a similar approach to ensure at least a minimal amount of comparability.

Note that Cantu et al. [55] solved the problem of dental caries localization as
a semantic segmentation task. The recall and F1-score are calculated per pixel,
while others worked with bounding boxes. However, the reader can still estimate
how their work compares to others in table.

8.7 Visualization of models

All figures in this section were generated by the best performing ensemble model
for caries detection, introduced in Section 8.11, and the U-Net-I model (without
post-processing).

Figure 8.9 shows the relationship between the number of false positives per
image and the recall of the model. The graph was truncated and did not include
points for recall > 0.91 since it would decrease the chart’s readability.

Figure 8.11 overlays the bitewing image with predictions of both caries detection
and restorations segmentation models. For more similar figures, see Appendix B.1
and C
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Figure 8.9: Number of false positives per
image for a given value of recall
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Figure 8.10: Percentage of nondetected
dental caries based on the precision of the
model
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(a) : Original image

The o
(b) : Output of our models

.

Figure 8.11: Segmented dental restorations in yellow, predicted dental caries in pink
and ground truth of dental caries in green. We see a single false positive detection on
the top right of the image. The author of the dataset acknowledges it to be a missing
ground truth label
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Discussion and further suggestions

9.1 Comments on model comparison and their

improvements

We observed that updating the dataset by either increasing the number of data or
correcting annotations mistakes showed a significant improvement in the moni-
tored metrics.

The results differ only in units of percent if we use models with smaller back-
bones, as shown in Table 8.7. Furthermore, parameter-heavy models such as
EfficientDet-D4 performed worse than others, see Table 8.4. This was surprising
since EfficentDet-D4 was out-performing all other tested models on the MS COCO
benchmark [24, 8].

The weight decay did not affect the behavior of YOLOv5 and Faster R-CNN.
This was unexpected since we would anticipate an increase in performance on the
validation and test dataset.

The use of group normalization significantly decreased the performance gap
between EfficiendDet and other models (Section 8.2.2), but the results were still
inferior to most of the models.

9.2 Ensembling

Model ensembling improved the results more than we anticipated. We assess that
this was caused by the array of object detection models used for the ensemble.
The results in Section strengthen this introduction8.4.3. We were surprised that
our proposed aware ensembling solution (see Section 7.4.2) did not improve the
results.
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9.3 Dental restorations segmentation

9.3.1 Non-deep learning approach

The grid search did not find a hyper-parameter, ensuring that adaptive threshold-
ing methods would detect only dental restoration. From Figure 8.5 we see that
adaptive thresholding methods include many false-positive predictions. A signifi-
cant amount of those is removed by morphological operations, but the IOU 0.314
is still relatively low compared to U-Net models. This corresponds to the results
of Abdalla-Aslan et al. [18], who achieved a precision of 0.33 when segmenting
dental restorations from panoramic images.

9.3.2 U-Net

The baseline U-Net model already showed significant performance gain over the
non-deep learning segmentation pipeline. It was improved by more than 10% using
morphological operations post-processing.

Improvements in the training process increased the performance of U-Net
significantly; on the contrary, post-processing the improved U-Net model improved
all tracked metrics negligibly.

In the figure 8.6, we compare the predicted pixel mask with the ground truth. In
the border areas of dental restorations, the model seems to estimate its position
better than the ground truth labels. This happens due to the unease of labeling
data for segmentation tasks. The annotator needs to include many points in the
bounding rectangle to correspond to the absolute position of the restoration. We
believe that this hurts the reported performance of the model.

9.4 Comparison of results with related publications

Results obtained by this work have beaten those achieved by Srivastava at al. [16]
and Kumar and Srivastava [?]. Please note that even though Kumar continued
on the work published by Srivastava et al., even extending the dataset used by
Srivastava twofold, all metrics reported by them dropped significantly. We cannot
explain what caused this decrease in performance. Kumar does not address this
problem in the published paper.

Bayrakdar2021 et al. [56] and Bayraktar2021 et al [62] reported better results
than we achieved throughout our work. We find that surprising since both works
had a significantly smaller amount of data (621 and 1000 images). We exper-
imented with the YOLOv3 architecture used by Bayraktar202 [62], but in our
experiments, it achieved worse results than other architectures. We, therefore,
found their results to be irreproducible.

Cantu et al. achieved a similar F1-Score as we did in our work. The comparability
of those results is limited since they solved semantic segmentation tasks contrary
to object detection. F
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Chapter 10

Conclusion

This thesis has developed a solution based on convolutional neural networks for
dental caries detection and dental restorations segmentation. The best-performing
model for dental caries detection achieved AP@.5 = 0.725, and an ensemble of
ten models improved the results to AP@.5 = 0.774. The best model for dental
restorations segmentation achieved an IOU of 0.676 and a Dice score of 0.76.

We contributed to creating a dataset containing 3989 bitewing images with
7257 annotated dental caries. Furthermore, for 521 images, a pixel mask with
highlighted dental restorations is available. To our knowledge, this is one of the
most extensive datasets created for caries detection.

During the dataset’s creation, the model already proved to detect dental caries
overlooked by a dentist, and since then, the model has improved significantly.
Therefore, we believe that the model in its current state would be helpful during
the diagnosis of dental caries. It could serve as a second opinion for the dentists
that they could compare his beliefs against.

Further work

The primary focus should be on finishing the sixth stage of the dataset in the
future. We believe that there are still overlooked dental caries, despite the de-
creasing number of caries in stage three. We believe that including additional

models with different architectures could further increase the performance. For
example, parameter-heavy models such as EfficientDet with D4+ backbones could
be trained and added to the ensemble. However, this would require a GPU with
more dedicated memory. According to our experience, a 40GB GPU would be
required to fit EfficientDet-D4 with batch size four into the GPU.

It may be worth exploring the option of backbone sharing across multiple
tasks. The model for segmentation of dental restorations could benefit from the
backbone shared with the model for object detection, which we trained on a
significantly larger amount of data. Therefore, we believe that the backbone would
be able to extract better features from the image and thus improve segmentation
performance.
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Appendix B

Aditional results

Model AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

YOLOv5-l6 0.463 0.869 0.841 0.442 0.697 0.887 0.974

EffDet-D4 0.297 0.82 0.735 0.164 0.552 0.838 0.815

Table B.1: Comparision of trained models on the train part of stage three dataset

Model Precision Recall F-score γ

FRCNN-R101 0.69 0.64 0.664 0.662

FRCNN-R50 0.623 0.68 0.65 0.489

YOLOv5-m6 0.671 0.6 0.634 0.273

YOLOv5-l6 0.621 0.64 0.63 0.219

EfficientDet-D4 0.621 0.59 0.605 0.216

RetinaNet-swint 0.661 0.63 0.645 0.24

RetinaNet-R50 0.674 0.6 0.635 0.41

Table B.2: Precision, recall, and F-score based on the confidence threshold γ for the
models trained on stage four datset

Model Precision Recall F-score γ

FRCNN-R101 0.701 0.67 0.685 0.664

FRCNN-R50 0.679 0.7 0.689 0.663

YOLOv5-m6 0.672 0.69 0.681 0.238

YOLOv5-l6 0.609 0.62 0.615 0.114

EfficientDet-d4 0.648 0.62 0.634 0.183

RetinaNet-swint 0.714 0.67 0.691 0.401

Table B.3: Precision, recall, and F-score based on the confidence threshold. Models
were trained on stage-five dataset
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B. Aditional results......................................
Model AR AR@.510 AR@.5 AR@.75 AR@.5S AR@.5M AR@.5L

YOLOv5-l6 0.559 0.895 0.956 0.559 0.916 0.971 0.971

YOLOv5-m6 0.547 0.899 0.957 0.541 0.933 0.971 0.971

YOLOv5-s6 0.545 0.877 0.951 0.549 0.916 0.968 0.968

Effdet-D1 0.531 0.87 0.958 0.488 0.909 0.978 0.978

FRCNN-R50 0.475 0.867 0.883 0.445 0.832 0.899 0.899

FRCNN-R101 0.478 0.864 0.89 0.458 0.815 0.917 0.917

RetN-swint 0.508 0.89 0.946 0.468 0.902 0.967 0.967

Table B.4: Average recall of models trained by improved training protocol

Model Precision Recall F-score Confidence threshold

YOLOv5-l6 0.689 0.69 0.689 0.271

YOLOv5-m6 0.74 0.64 0.686 0.326

YOLOv5-s6 0.692 0.64 0.665 0.295

Effdet-D1 0.739 0.64 0.686 0.339

FRCNN-R50 0.719 0.66 0.688 0.759

FRCNN-R101 0.704 0.63 0.665 0.684

RetN-swint 0.681 0.69 0.685 0.367

Table B.5: Precision, recall, and F-score based on the confidence threshold for different
models, trained by the imporved training protocol

Method AR AR@.510 AR@.5 AR@.75 AR@.5S AR@.5M AR@.5L

NMS 0.546 0.91 0.971 0.522 0.949 0.98 0.98

S-NMS 0.584 0.888 0.951 0.603 0.912 0.965 0.965

NWM 0.526 0.913 0.941 0.513 0.892 0.959 0.959

WBF 0.573 0.918 0.975 0.569 0.956 0.981 0.981

WBF-A 0.572 0.92 0.974 0.566 0.956 0.98 0.98

Table B.6: Average recall of models ensembled by parameters from Table 8.9

Method Precision Recall F-score Confidence threshold

NMS 0.708 0.68 0.694 0.284

S-NMS 0.679 0.7 0.689 0.489

NWM 0.713 0.71 0.712 0.792

WBF 0.732 0.7 0.715 0.594

WBF-A 0.745 0.69 0.716 0.201

Table B.7: Precision, recall, and F-score based on the confidence threshold for different
ensembling methods
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............. B.1. Detection of detnal caries and segmentation of dental restorations

B.1 Detection of detnal caries and segmentation of

dental restorations
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B. Aditional results......................................

(a) : Input image

(b) : Predictions of the model

Figure B.1: Four correct detection of dental caries and one falsely-positive
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............. B.1. Detection of detnal caries and segmentation of dental restorations

(a) : Input image

(b) : Predictions of our model

Figure B.2: Segmented dental restorations in yellow, predicted dental caries are pink.
We see a successful segmentation of dental restorations and a single falsely positive
prediction of dental caries 87
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Appendix C

Images

C.1 Predictions of the model

The following figures are X-ray images from the test part of the stage four dataset.
Ground truth labels are marked by pink color and the model predictions are in
green, please note the difference in used colors from Section B.1. Each bounding
box prediction has corresponding confidence attached to it.

Figure C.1: X-ray image with ground truth boxes and model’s predictions. Tho model
correctly predicts 11 out of 12 dental caries in the image.
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C. Images ..........................................

Figure C.2: The model predicts correctly five dental caries and has one falsely negative
prediction
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................................. C.1. Predictions of the model

Figure C.3: Prediction of the model in image with extensive amount of dental restora-
tions
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C. Images ..........................................

Figure C.4: The model predictions on image with dental bridge

C.2 Model importance during ensembling
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Figure C.5: Importance of different models during ensembling with the same architec-
tures and backbones
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................................... C.3. Augmented images

Figure C.7: No transformation applied
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Figure C.6: Importance of different models during ensembling with the architecture
and different backbones

C.3 Augmented images
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C. Images ..........................................

Figure C.8: Gaussian blur applied

Figure C.9: Rotation applied
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................................... C.3. Augmented images

Figure C.10: Gamma correction applied

Figure C.11: Translation applied
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C. Images ..........................................

Figure C.12: The whole augmentation pipeline applied
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